Lifescience Global

Journal of Basic & Applied Sciences

Synthesis, Characterization, In-Vitro Antimicrobial and Antioxidant Activities of Co+2, Ni+2, Cu+2 and Zn+2 Complexes of 3-(2-(2-hydroxy-3-methoxybenzylidene)hydrazono)indolin-2-one
Pages 125-130
Zahid Khan, Zahida T. Maqsood, Muhammad Asad K. Tanoli, Khalid M. Khan, Lubna Iqbal and Mehreen Lateef


Published: 23 February 2015

Open Access

Abstract: Four novel complexes of “3-(2-(2-hydroxy-3-methoxybenzylidene)hydrazono)indolin-2-one” have been synthesized with Co+2, Ni+2, Cu+2 and Zn+2. Physical and analytical techniques including CHN, IR, UV-Vis, AAS, molar conductivity values and magnetic susceptibility data were used to characterize all complexes. The bis Schiff base ligand i.e. 3-(2-(2-hydroxy-3-methoxybenzylidene)hydrazono)indolin-2-one, acted as a tridentate ligand and coordinated through phenolic oxygen, azomethine nitrogen and carbonyl group. Low values of molar conductance suggested the non-electrolyte nature of all complexes. Elemental analysis of complexes indicated the 1:1 metal to ligand mole ratios for [Cu(Inh)(OAc)] and [Zn(Inh)(OAc)] metal complexes and 1:2 metal to ligand mole ratios for [Co(Inh)2] and [Ni(Inh)2] metal complexes. Square planner geometry is proposed for [Cu(Inh)(OAc)] and distorted tetrahedral geometry is proposed for [Zn(Inh)(OAc)] while octahedral geometries are proposed for [Co(Inh)2] and [Ni(Inh)2] metal complexes. Antimicrobial and antioxidant studies were performed for all compounds and it was discovered that the complexes are more potent antibacterial and antifungal agents while the ligand exhibited comparatively more DPPH (1,1-diphenyl-2-picryl-hydrazil) radical scavenging activity than the complexes.

Keywords: Bis Schiff base, Transition metal complexes, Antimicrobial, Antioxidant.

Download Full Article
Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn


♦  Worldwide readership
♦  High quality content
♦  Maximum visibility
♦  Efficient publishing
♦  Optional Open Access

Publish your Research


As an author what type of publishing model you prefer?

Open Access
Optional Open Access
Subscription based
5 Votes left

Nafa Urbach Iwan Fals Siti Badriah Aura Kasih acha septriasa artis bugil dewi persik julia perez duo srigala ayu ting ting isyana sarasvati olga syahputra dewi persik syahrini luna maya nikita willy mulan jameela superman is dead