Lifescience Global

JMST smallweb

Mechanical Characterization of APA Microcapsules by Parallel-Plate Compression
Pages 40-47

Kiyoshi Bando and Yohei Yamaguchi

DOI: http://dx.doi.org/10.6000/1929-6037.2017.06.02.1

Published: 04 August 2017


Abstract: We produced microcapsules of alginate-poly(L)lysine-alginate (APA)with diameters on the order of 10 µm. To characterize their mechanical properties, we conducted an experiment on the parallel-plate compression of a microcapsule and modeled its deformation. In the modeling task, the microcapsule was assumed to be a spherical liquid-filled elastic membrane with negligible bending stiffness and permeability. The membrane thickness was estimated by applying Reissner’s linear elastic theory to the experimental force-displacement relationship during loading in the small displacement region. The initial stretch of the membrane was taken into account; it was mainly caused by the osmotic pressure difference across the membrane. The initial stretch of the microcapsule was determined by fitting the calculated and experimental force-displacement relationships during loading at small to medium displacements. At large displacements, the calculated force was smaller than the experimentally measured force because of fluid permeation across the APA membrane. The calculated and experimentally imaged shapes of the deformed microcapsule were compared. The effects of varying the membrane thickness on the force-displacement and transmural pressure-displacement curves were shown, and the limitations of applying the present deformation model were examined.

Keywords: Microcapsule, compression, modeling, mechanical characterization, initial stretch.
Download Full Article
Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

OUR STRENGTHS

♦  Worldwide readership
♦  High quality content
♦  Maximum visibility
♦  Efficient publishing
♦  Optional Open Access

Publish your Research

Survey

As an author what type of publishing model you prefer?

780
Open Access
493
Optional Open Access
338
Subscription based
5 Votes left