Biotechnology for Wellness Industry: Concepts and Biofactories

Authors

  • Mohamad R. Sarmidi Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
  • Hesham A. El Enshasy Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia

DOI:

https://doi.org/10.6000/1927-3037.2012.01.01.01

Keywords:

Wellness, homeostasis, natural ingredients, metabolites, wellness industry

Abstract

One of the major issues in the 21st. century facing humankind is on how to stay healthy and delay the onset of chronic metabolic diseases. Chronic metabolic chronic diseases still afflict a substantial percentage of modern human population despite the advances in medical and health care technologies. They create a long-term financial burden to the nation as well as reducing the productivity and the quality of life. In the recent years, the wellness approach to healthy living by mean of health enhancement and disease prevention has been increasing in popularity. There is a tremendous global and local interest for wellness products. Wellness sector focuses on providing products and services to a wider community to improve appearance, slow down the effect of ageing and to reduce the risk of developing chronic metabolic diseases. The wellness products are intended for the promotion of health in soil, plants, animals and human. Soil health is the foundation of wellness as healthy and productive soil produce healthy plants and crops in turn produced healthy animals for human nutrition. It is a fact that human health is closely associated with the practice of healthy life style that include consuming wholesome nutrients, living in a non-toxic environment and enhancing physical and mental fitness. These factors in turn promote the attainment and maintenance of cellular homeostasis. Under cellular homeostasis the cellular metabolic activities are at their optimum. In this regard traditional and modern biotechnology offer comprehensive list of natural ingredients and metabolites essential for cellular metabolism. These natural ingredients and metabolites are derived from microbial, algal, plant, animals, and human sources. Most of these natural products are increasingly made available by using innovative bioprocess technologies as more of them are main components of functional foods, nutraceuticals, cosmeceuticals and therapeutics. Bioprocess industries are considered as source for both health and wealth. The new concept of bioprocess industries is based on using different types of cells as small micro-bio-factories. These small biofactories belong to different classes of living organisms ranging from the most primitive prokaryotic bacterial cells up to high eukaryotic human cells. In the present review, the concept of bioprocess design and cultivation of cells up to the industrial level will be presented.

References

Biotechnology Industry Organization (BIO). http://www.bio.org/. [cited 2012 Feb 12]

Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279: 1200-5. http://dx.doi.org/10.1001/jama.279.15.1200

Chew YH, Shia YL, Lee CT, et al. Modeling of glucose regulation and insulin-signaling pathways. J Mol Cell Endocrinol 2009; 303: 13-24. http://dx.doi.org/10.1016/j.mce.2009.01.018

Morgan G, Ward R, Barton M. The Contribution of Cytotoxic Chemotherapy to 5-year Survival in Adult Malignancies. Clin Oncol 2004; 16: 549-60. http://dx.doi.org/10.1016/j.clon.2004.06.007

Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007; 370: 851-8. http://dx.doi.org/10.1016/S0140-6736(07)61415-9

Pilzer PZ. Ed. The Wellness Revolution: How to Make a Fortune in the Next Trillion Dollar Industry. 1st ed. New York: Wiley 2003.

Global Spa Summit, Spas and the Global Wellness Market: Synergies and Opportunities, prepared by SRI International, May 2010.

Healing, Fueling, Feeding: How Biotechnology Is Enriching Your Life. Biotechnology Industry Organization (BIO). [cited 2012 Feb 15]: Available from: http://www.bio.org/articles/healing-fueling-feeding-how-biotechnology-enriching-your-life.

Zhao J. Nutraceuticals, Nutritional Therapy, Phytonutrients, and Phytotherapy for Improvement of Human Health: A Perspective on Plant Biotechnology Application. Rec Pat Biotechnol 2007; 1: 175-97. http://dx.doi.org/10.2174/187220807779813893

World Health Organization (WHO). [cited 2012 Feb 15]: available from http://www.who.int/en/

Hallale N. Engineering a Healthy Body. Chem Eng Prog 2010; 106: 32-7.

Beyond Therapy: Biotechnology and the Pursuit of Happiness, A Report by the President’s Council on Bioethic 2003

El Gewely MR. Biotechnology domain. Biotechnol Ann Rev 1995; 1: 5-68. http://dx.doi.org/10.1016/S1387-2656(08)70047-4

Marquina D, Santos A, Peinado J. Biology of killer yeasts. Int Microbiol 2002; 5: 65-71. http://dx.doi.org/10.1007/s10123-002-0066-z

Kjeldsen T. Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 2000; 54: 277-87. http://dx.doi.org/10.1007/s002530000402

Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86: 403-17. http://dx.doi.org/10.1007/s00253-010-2447-0

Pan DD, Zeng XQ, Yan YT. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 2010; 91: 512-8. http://dx.doi.org/10.1002/jsfa.4214

Ding WK, Shah NP. Acid, bile and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 2007; 72: M446-50. http://dx.doi.org/10.1111/j.1750-3841.2007.00565.x

Czerucka D, Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect 2002; 4: 733-9. http://dx.doi.org/10.1016/S1286-4579(02)01592-7

El Enshasy H, El Shereef A. Probiotic/biotherapeutic yeast Saccharomyces boulardii adapted to dryness stress: optimization of high cell density cultivation of yeast. Deut Lebensmittel Rundschau 2008; 104: 389-94.

Tiago FCP, Martins FS, Rosa CA, Nardi RMD, Cara DC, Nicoli JR. Physiological characterization of non-Saccharomyces yeasts from agro-industrial and environmental origins with possible probiotic function. World J Microbiol Biotechnol 2009; 25: 657-66. http://dx.doi.org/10.1007/s11274-008-9934-9

Sanders KME. Summary of probiotic activities of Bifidobacterium lactis HN019. J Clin Gastroenterol 2006; 40: 776-83.

Yoshida Y, Seki T, Matsunaka H, et al. Clinical effects of probiotic Bifidobacterium breve supplementation in adult patients with atopic dermatitis. Yonago Acta Medica 2010; 53: 37-45.

Ljungh Å, Wadström T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 2006; 7: 73-90.

Moslehi-Jenabian S, Pedersen LL, Jespersen L. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2010; 2: 449-73. http://dx.doi.org/10.3390/nu2040449

Fairclough A, Cliffe D, Knapper S. Factors affecting Penicillium roquefortii (Penicillium glaucum) in internally mould ripened cheeses: implications for pre-packed blue cheeses. Int J Food Sci Technol 2011; 46: 1486-90. http://dx.doi.org/10.1111/j.1365-2621.2011.02658.x

Liu DM, Li L, Yang XQ, Liang SX, Wang JS. Survivability of Lactobacillus rhamnosus during the preparation of soy cheese. Food Technol Biotechnol 2006; 44: 417-22.

Rivera-Espinza Y, Gallardo-Navaro Y. Non-dairy probiotic products. Food Microbiol 2010; 27: 1-11. http://dx.doi.org/doi:10.1016/j.fm.2008.06.008

Papagianni M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol Adv 2007; 25: 244-63. http://dx.doi.org/10.1016/j.biotechadv.2007.01.002

Jernejc K, Cimerman A. Composition of Aspergillus niger mycelium during growth on productive and unproductive substrates. J Biotechnol 1992; 25: 341-8. http://dx.doi.org/10.1016/0168-1656(92)90166-7

El Enshasy H. Optimization of gluconic acid production by recombinant Aspergillus niger carrying multiple copies of

glucose oxidase gene in batch and fed-batch cultures. Deutsche Lebensmittel Rundschau 2006; 102: 1-6.

Dronawat SN, Scihla CK, Hanley TR. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger. Appl Biochem Biotechnol 1995; 51/52: 347-54. http://dx.doi.org/10.1007/BF02933438

Bohmann JT, Cameselle C, Nunez MJ, Lema JM. Oxalic acid production by Aspergillus niger. Part II: optimization of fermentation with milk whey as carbon source. Bioproc Biosys Eng 1998; 19: 337-42. http://dx.doi.org/10.1007/PL00009022

Strasser H, Burgstaller W, Schinner F. High-yield production of oxalic acid from metal leaching process by Aspergillus niger. FEMS Microbiol Lett 1994; 119: 365-70.

Utagawa T. Production of arginine by fermentation. J Nut Suppl 2004; 2854S-7S.

Momose H, Ishida M, Terabe M. Production of L-arginine by fermentation. Japanese Patent 1982; 57-5693.

Sato T, Mori T, Tosa T, et al. Engineering analysis of continuous production of L-aspartic acid by immobilized Escherichia coli cells in fixed beds. Biotechnol Bioeng 1975; 17: 1797-804. http://dx.doi.org/10.1002/bit.260171209

Plachy J, Sikyta B. Production of L-aspartic acid from fumaric acid by Alcaligenes metalcaligenes CCEB 312. Folia Microbiol 1977; 22: 410-4. http://dx.doi.org/10.1007/BF02877678

Nakamura J, Hirano S, Ito H, Wachi M. Mutations of Corynebacterium glutamicum NCg11221 gene, encoding a mechanosensitive channel homolg, induce L-glutamic acid production. Appl Environ Microbiol 2007; 73: 4491-8. http://dx.doi.org/10.1128/AEM.02446-0

Kurihara K. Glutamate: from discovery as a food flavor to role as basic taste (umami). Am J Clin Nutr 2009; 90: 719S-22S. http://dx.doi.org/10.3945/ajcn.2009.27462D

Sano C. History of glutamate production. Am J Clin Nutr 2009; 90: 728S-32S. http://dx.doi.org/10.3945/ajcn.2009.27462F

Leuchtenberger W, Huthmacher K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 2005; 69: 1-8. http://dx.doi.org/10.1007/s00253-005-0155-y

Anastassiadis S. L-Lysine fermentation. Rec Pat on Biotechnol 2007; 1: 11-24.

Kumar D, Gomes J. Methionine production by fermentation. Biotechnol Adv 2005; 23: 41-61. http://dx.doi.org/10.1016/j.biotechadv.2004.08.005

Shu C-H, Lia C-C. Optimization of L-phenylalanine production of Corynebacterium glutamicum under feedback inhibition by elevated oxygen transfer rate. Biotechnol Bioeng 2002; 77: 131-41. http://dx.doi.org/10.1002/bit.10125

Förberg C, Häggström L. Phenylalanine production from a rec Escherichia coli-strain in fed-batch culture. J Biotechnol 1988; 8: 291-300. http://dx.doi.org/10.1016/0168-1656(88)90021-1

Chen N, Huang J, Fend Z-b, Yu L, Xu Q-y, Wen T-y. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl Biochem Biotechnol 2009; 158: 595-604. http://dx.doi.org/10.1007/s12010-008-8385-y

Lee, M-H, Lee, H-W, Park J-H, Ahn, J-O, Jung J-K, Hwang Y-I. Improved L-threonine production of Escherichia coli mutant by optimization of culture conditions. J Biosci Bioeng 2006; 101: 127-30. http://dx.doi.org/10.1263/jbb.101.127

Ikeda M, Katsumata R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified-pentose phosphate pathway. Appl Environ Microbiol 1999; 65: 2497-502.

Kalingan AE, Liao CM. Influence of type and concentration of flavinogenic factors on production riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 2002; 82: 219-24. http://dx.doi.org/10.1016/S0960-8524(01)00194-8

Jiménez A, Santos MA, Pompejus M, Revuelta JL. Metabolic engineering of purine pathway for riboflavin production by Ashbya gossypii. Appl Environ Microbiol 2005; 71: 5743-51. http://dx.doi.org/10.1128/AEM.71.10.5743-5751.2005

El-Refai HA, El-Helow E, Amin MA, Sallam LA, Salem H. Application of multi-factorial experimental designs for optimization of biotin production by a Rhizopus nigricans strain. J Am Sci 2010; 6: 179-87.

Brown SW, Speck D, Sabatié J, Gloeckler R, O`Regan M, Viret JF, et al. The production of biotin by recombinant strains of Escherichia coli. J Chem Tech Biotechnol 1991; 50: 115-21. http://dx.doi.org/10.1002/jctb.280500114

D`Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 2012 (in press). http://dx.doi.org/10.1111/j.1365-2672.2012.05261.x

Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by Bifidobacteria as potential probiotic property. Appl Environ Microbiol 2007; 73: 179-85. http://dx.doi.org/10.1128/AEM.01763-06

Martens J-H, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002; 58: 275-85. http://dx.doi.org/10.1007/s00253-001-0902-7

El Enshasy H, Al Laboudy S, Abdel-Aal SS, Maroun BM, El Kelani TA. Production of vitamin B12 by methanol utilizing bacteria Rubrobacter motiliticus nov. var. gelatinoliquificicans in shake flask and bioreactor cultures under different cultivation conditions. Deutsche Lebensmittel Rundschau 2008; 104: 384-88.

Vandamme EJ. Production of vitamins, Coenzymes and related biochemicals by biotechnological process. J Chem Tech Biotechnol 1992; 53: 313-27. http://dx.doi.org/10.1002/jctb.280530402

Bhosale SH, Rao MB, Deshpande VV. Molecular and industrial aspects of glucose isomerase. Microbiol Rev 1996; 60: 280-300.

Kovalenko GA, Perminova LV, Chuenko TV, Sapunova LI, Shlyakhotko EA, Lobanok AG. Immobilization of a recombinant strain producing glucose isomerase inside SiO2-Xerogel and properties of prepared biocatalysts. Appl Biochem Microbiol 2011; 47: 151-7. http://dx.doi.org/10.1134/S0003683811020074

El-Enshasy H, Hellmuth, K. and Rinas, U. GpdA-promoter controlled production of glucose oxidase by recombinant Aspergillus niger using non-glucose carbon sources. Appl Biochem Biotechnol 2001; 90: 1-10.

El Enshasy H, Kleine J, Rinas, U. Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 2006; 41: 2103-12.

Sojo M, Bru R, Loppez MD, Garcia CF, Arguelles JC. Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis isolation and physiological characterization. J Appl Microbiol Biotechnol 1997; 47: 583-9. http://dx.doi.org/10.1007/s002530050977

Lashkarian H, Raheb J, Shahzamani K, Shahbani H, Shamsara M. Extracellular cholesterol oxidase from Rhodococcus sp.: Isolation and molecular characterization. Ir Biomed J 2010; 14: 49-57.

El Enshasy, H. Bioprocess development for the production of -amylase by Bacillus amyloliquefaciens in batch and fed-batch cultures. J Microbiol Res 2007; 7: 560-8.

El Enshasy H, Abdel Fattah Y, Othman N.Z . Amylases. In: Yang S-T, El Enshasy HA, Thongchul N, Editors. Bioprocessing Technologes in Integrated Biorefinery from Production of Biofuels, Biochemicals, and Biopolymers from Biomass. New Yrok: John Wiley & Sons 2012; (in press).

Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 2001; 56: 326-38. http://dx.doi.org/10.1007/s002530100704

Biely P. Microbial xylanolytic systems. Trends Biotehnol 1985; 3: 286-90. http://dx.doi.org/10.1016/0167-7799(85)90004-6

Greiner R, Konielzny U. Phytase for food application. Food Technol Biotechnol 2006; 44: 125-40.

Bajaj BK, Wani MA. Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: Potential application for animal feed production. Eng Life Sci 2011; 11: 620-8. http://dx.doi.org/10.1002/elsc.201100039

Maki ML, Broere M, Leung KT, Qin W. Characterization of some efficient cellulose producing bacteria from paper mill sludges and organic fertilizers. Int J Biochem Mol Biol 2011; 2: 146-54.

Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases-production, application and challenges. J Sci Ind Res 2005; 64: 832-44.

Remminghorst U, Rehm BHA. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28: 1701-12. http://dx.doi.org/10.1007/s10529-006-9156-x

Sabra W, Zeng A-P, Deckwer W-D. Bacterial alginate: product quality and process aspects. Appl Microbiol Biotechnol 2001; 56: 315-25. http://dx.doi.org/10.1007/s002530100699

Bajaj IB, Survase SA, Saudagar PS, Singhal RS. Gellan gum: Fermentative production, downstream processing and applications. Food Technol Biotechnol 2007; 45: 341-54.

Arockiasamy S, Banik M. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with non ionic surfactants using central decomposite design. J Biosc Bioeng 2008; 105: 204-10. http://dx.doi.org/10.1263/jbb.105.204

Leathers TD. Biotechnological production and application of pullulan. Appl Microbiol Biotechnol 2003; 62: 468-73. http://dx.doi.org/10.1007/s00253-003-1386-4

Cheng KC, Demirci A, Catchmark JM. Pullulan: Biosynthesis, production, and applications. Appl Microbiol Biotechnol 2011; 92: 29-44. http://dx.doi.org/10.1007/s00253-011-3477-y

Cheirsilp B, Shimizu H, Shioya S. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J Biotechnol 2003; 100: 43-53. http://dx.doi.org/10.1016/S1389-1723(03)80194-9

Zajšek K, Kolar M, Goršek A. Characterization of the exopolysaccharide kefiran produced by lactic acid bacteria entrapped within natural kefir grains. Int J Dairy Technol 2011; 64: 544-8. http://dx.doi.org/10.1111/j.1471-0307.2011.00704.x

Nikitina VE, Tsivileva OM, Pankratov AN, Bychkov NA. Lentinula edodes biotechnology- from lentinan to lectins. Food Technol Biotechnol 2007; 45:230-7.

Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002; 60: 258-74. http://dx.doi.org/10.1007/s00253-002-1076-7

El Enshasy H, Maftoun P, Abd Malek R. Pleuran: Immunomodulator polysaccharide from Pleurotus ostreatus: Structure, production and application. In: Andres S. and Baumann N Editors. Mushrooms: Type, properties and nutrition. New York, USA. Nova Publisher 2012; pp. 153-72.

Gregori A, Švageli M, Pohleven J. Cultivation techniques and medicinal properties of Pleurotus sp. Food Technol Biotechnol 2007; 45: 238-49.

Garcia-Ochoa F, Santos VE, Casas JA, Comez E. Xanthan gum: Production, Recovery and Properties. Biotechnol Adv 2000; 18: 549-79. http://dx.doi.org/10.1016/S0734-9750(00)00050-1

El Enshasy H, Then C, Othman NZ, et al. Enhanced xanthan production process in shake flask and pilot scale bioreactors using industrial semi-defined medium. Afr J Biotechnol 2011; 10: 1029-38.

Poirier Y, Mawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers in bacteria and plants. Nat Biotechnol 1995; 13: 142-50. http://dx.doi.org/10.1038/nbt0295-142

Steinbüchel A. Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Mol Biosci 2001; 1: 1-24.

Weber CJ, Haugaard C, Festersen R, Bertelsen G. Production and application of biobased packaging materials for the food industry. Food Addit Contam 2002; 19: 172-7. http://dx.doi.org/10.1080/02652030110087483

Obata S, Hiromi K, Masakazu I, Takashi S, Katsunori K. Method for production of polylactate using recombinant microorganisms. EU Patent 2011 (EP. 2377945).

Elander RP. Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol 2003; 61: 385-92. http://dx.doi.org/10.1007/s00253-003-1274-y

Demain AL, Elander RP. The β-lactam antibiotics: Past, present, and future. Ant Van Leeuw 1999; 75: 5-19. http://dx.doi.org/10.1023/A:1001738823146

Martin JF, Casqueiro J, Kosalkova K, Marcos AT, Gutiérrez S. Penicillin and cephalosporin biosynthesis mechanism of carbon catabolite regulation of penicillin production. Ant Van Leeuw 1999; 75: 21-31. http://dx.doi.org/10.123/A:1001820109140

Liras P. Biosynthesis and molecular genetics of cephalosporins. Ant Van Leeuw 1999; 75: 109-24. http://dx.doi.org/10.1023/A:1001804925843

El Enshasy H, Abdel Fattah Y, Atta A, et al. Kinetics of cell growth and cyclosporine A production by Tolypocladium inflatum during process scaling up from shake flask to bioreactor. J Microbiol Biotechnol 2008; 18: 128-34.

El Enshasy H. Immunomodulators. In: Hofrichter M, Ed. The Mycota (2nd. ed). Vol. X. Springer Verlag 2010; pp. 165-94. http://dx.doi.org/10.1007/978-3-642-11458-8_8

El Enshasy HA, Mohamed NA, Farid MA, El Diwany AI. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour Technol 2008; 99: 4263-8. http://dx.doi.org/10.1016/j.biortech.2007.08.050

Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale up from 50L to 372 m3 scale. Bioresour Technol 2009; 100: 1406-12. http://dx.doi.org/10.1016/j.biortech.2008.09.017

Abu-Shady MR, Farid MA, El Diwany AI, El Enshasy HA. Studies on rifamycins production by Amycolatopsis mediterranei cells immobilized on glass wool. J Basic Microbiol 1995; 35: 279-84. http://dx.doi.org/10.1002/jobm.3620350502

El Enshasy H, El Baz A, Ammar E. Simultaneous production and decomposition of different rifamycins during Amycolatopsis mediterranei growth in shake flask and in stirred tank bioreactor. In: Communicating current research and educational. Topics and trends in applied microbiology. Vol. 1. Spain; Formatex Research Centre: Badajoz 2007; pp. 315-21.

El Enshasy H, Farid M, El Sayed E. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J Basic Microbiol 2000; 40: 389-98. http://dx.doi.org/10.1002/1521-4028(200012)40:5

Chen G-Q, Lu F-P, Du L-X. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. Agr Food Chem 2008; 56: 5057-61. http://dx.doi.org/10.1021/jf800479u

Schmidt M, Babu KR, Khanna N, Marten S, Rinas U. Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J Biotechnol 1999; 68: 71-83. http://dx.doi.org/10.1016/S0168-1656(98)00189-8

Gurramkonda C, Polez S, Skoko N, et al. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 2010; 9: 31-42. http://dx.doi.org/10.1186/1475-2859-9-31

Eitman MA, Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 2006; 24: 530-6. http://dx.doi.org/10.1016/j.tibtech.2006.09.001

Kamionka M. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 2011; 12: 268-74. http://dx.doi.org/10.2174/138920111794295693

Ottone S, Nguyen X, Baxin J, Bérad C, Jimenez S, Letourneur O. Expression of hepatitis B surface antigen major subtypes in Pichia pastoris and purification for in vitro diagnosis. Protein Expr Purific 2007; 66: 177-88. http://dx.doi.org/10.1016/j.pep.2007.07.008

Hardy E, Martínez E, Diago D, Díaz R, González D, Horrera L. Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. J Biotechnol 2000; 77: 157-67. http://dx.doi.org/10.1016/S0168-1656(99)00201-1

Xiao A, Zhou X, Zhou L, Zhang Y. Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Appl Microbiol Biotechnol 2006; 72: 837-44. http://dx.doi.org/10.1007/s00253-006-0338-1

Yang J, Zhou X, Zhang Y. Improvement of recombinant hirudin production by controlling NH4+ concentration in Pichia pastoris fermentation. Biotechnol Lett 2004; 26: 1013-7. http://dx.doi.org/10.1023/B:BILE.0000030049.75092.95

Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. Microbial community composition and function in wastewater treatment plants. Ant Van Leeuv 2002; 81: 665-80. http://dx.doi.org/10.1023/A:1020586312170

Siripong S, Rittmann BE. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 2007; 41: 1110-20. http://dx.doi.org/10.1016/j.watres.2006.11.050

Dua M, Singh A, Sethunathan N, Johri AK. Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 2001; 59: 143-52. http://dx.doi.org/10.1007/s00253-002-1024-6

Ezezika OC, Singer PA. Genetically engineered oil-eating microbes for bioremediation: Prospects and regulatory challenges. Technol Soc 2010; 32: 331-5. http://dx.doi.org/10.1016/j.techsoc.2010.10.010

Watanabe K. Microorganisms relevant to bioremediation. Curr Opin Biotechnol 2001; 12: 237-41. http://dx.doi.org/10.1016/S0958-1669(00)00205-6

Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Env Manag 2011; 92: 407-18. http://dx.doi.org/10.1016/j.jenvman.2010.11.011

Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 1989; 7: 39-44. http://dx.doi.org/10.1016/0167-7799(89)90057-7

Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999; 17: 319-39. http://dx.doi.org/10.1016/S0734-9750(99)00014-2

Saharan BS, Nehra V. Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res: LSMR 2011; 21: 1-30.

Johansson JF, Paul LR, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microb Ecol 2004; 48: 1-13. http://dx.doi.org/10.1016/j.femsec.2003.11.012

De Lange CFM, Pluske J, Gong J, Nyachoti CM. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Sci 2010; 134: 124-34. http://dx.doi.org/10.1016/j.livsci.2010.06.117

Anadón A, Martínez-Larrañaga MR, Aranzazu-Martínez M. Probiotics for animal nutrition in the European Union Regulation and safety assessment. Reg Toxicol Pharmacol 2006; 45: 91-5. doi:10.1016/j.yrtph.2006.02.004

Coeuret V, Gueguen M, Vernoux JP. Numbers and strains of lactobacilli in some probiotic products. Int J Food Microbiol 2004; 97:147-56. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.04.15

Farzanfar A. The use of probiotics in shrimp aquaculture. FEMS Immunol Med Rev 2006; 48: 149-58. http://dx.doi.org/10.1111/j.1574-695X.2006.00116.x

Pariza MW, Cook M. Determining the safety of enzymes used in animal feed. Reg Toxicol Pharmacol 2010; 56: 332-42. http://dx.doi.org/10.1016/j.yrtph.2009.10.005

Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol 2002; 13: 345-51. http://dx.doi.org/10.1016/S0958-1669(02)00328-2

Simon O. The mode of action of NSP hydrolyzing enzymes in the gastrointestinal tract. J Anim Feed Sci 1998; 7: 115-23.

Bedford MR, Cowieson AJ. Exogenous enzymes and their effects on intestinal microbiology. Anim Feed Sci Technol 2012; 173: 76-85. http://dx.doi.org/10.1016/j.anifeedsci.2011.12.018

Kies AK, van Hemert KHF, Sauer WC. Effect of phytase on protein and amino acid digestibility and energy utilization. World Poul Sci J 2001; 57: 109-126.

Cao L, Wang W, Yang C, et al. Application of microbial phytase in fish feed. Enz Microb Technol 2007; 40: 497-507. http://dx.doi.org/10.1016/j.enzmictec.2007.01.007

Wegener H. Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol 2003; 6: 439-45. http://dx.doi.org/10.1016/j.mib.2003.09.009

Defoirdt T, Sorgeloos P, Bossier P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 2011; 14: 251-8. http://dx.doi.org/10.1016/j.mib2011.03.004

Laughlin TJ, Ferrell TM. Biotechnology in the cosmetics industry. Nat Biotechnol 1987; 5: 1035-7. http://dx.doi.org/10.1038/nbt1087-1035

Grabenhofer R. Biotechnology in cosmetics: Concepts, tools and techniques. Allured Publishing Corp. IL, USA 2007.

Anzali S, Von Heydebreck A, Herget T. Elucidation of anti-aging effects of ectoine using cDNA microarray analysis and signaling pathway evaluation. Int J Cosm Sci 2010; 32: 319. http://dx.doi.org/10.1111/j.1468-2494.2010.00589_4.x

Buenger J, Driller H. Ectoin: An effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol Physiol 2004; 17: 232-7. http://dx.doi.org/10.1159/000080216

Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 2009; 8: 17-27. http://dx.doi.org/10.1186/1475-2859-8-17

Blattner FR, Plunkett Ill G, Bloch CA, et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277(5331): 1453-62. http://dx.doi.org/10.1126/science.277.5331.1453

Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 1997; 390: 249-56. http://dx.doi.org/10.1038/36786

Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418: 387-91. http://dx.doi.org/10.1038/nature00935

De Schutter K, Lin Y-C, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 2009; 27: 561-6. http://dx.doi.org/10.1038/nbt.1544

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51. http://dx.doi.org/10.1126/science.1058040

Kobayashi K, Kuwae S, Ohya T, et al. High-level expression of recombinant human serum albumin in the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 2000; 89: 55-61. http://dx.doi.org/10.1016/S1389-1723(00)80082-1

Hoffmann F, Rinas U. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol 2004; 89: 143-61. http://dx.doi.org/10.1007/b93996

Babaejpour V, Shojaosadati SA, Robatjazi SM, Khalilzadeh R, Maghsoudi N. Over-production of human interferon- by HCDC of recombinant Escherichia coli. Process Biochem 2007; 42: 112-7. http://dx.doi.org/10.1016/j.procbio.2006.07.009

Babu KR, Swaminathan S, Marten S, Khanna N, Rinas U. Production of interferon- in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol 2000; 53: 655-60. http://dx.doi.org/10.1007/s002530000318

Aldor IS, Krawitz DC, Forrest W, et al. Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Env Microbiol 2005; 71: 1717-28. http://dx.doi.org/10.1128/AEM.71.4.1717-1728.2005

Siddiqui SF, Bulmer M, Shamlou AP, Titchener-Hooker NJ. The effects of fermentation conditions on yeast cell debris particle size distribution during high pressure homogenization. Bioprocess Eng 1995; 14: 1-8. http://dx.doi.org/10.1007/BF00369846

Gao K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 1998; 10: 37-49. http://dx.doi.org/10.1023/A:1008014424247

Barsanti L, Gualtieri P. Algae anatomy, biochemistry and biotechnology. Boca Raton, London, New York: CRC Taylor & Francis 2006.

Duerr EO, Molnar A, Sato V. Cultured microalgae as aquaculture feeds. J Mar Biotechnol 1998; 6: 65-70.

Takeyama H, Kanamani A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T. Production of antioxidant vitamins. -carotene, vitamin C, vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 1997; 53: 185-90. http://dx.doi.org/10.1002/(SICI)1097-0290(19970120)5

Borowitzka MS. Commercial production of microalgae: ponds, tanks, tubes and fermentors. J Biotechnol 1999; 70: 313-21. http://dx.doi.org/10.1016/S0168-1656(99)00083-8

Zemke-White WL, Ohno M. World seaweed utilisation: an end-of-century summary. J Appl Phycol 1999; 11: 369-76. http://dx.doi.org/10.1023/A:1008197610793

Richmond A. Cell response to environmental factors. In: Richmond, A. Editor. Handbook of microalgal mass culture. Florida.CRC Press Inc. 1986; pp. 89-95.

Banerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 2002; 22: 245-79. http://dx.doi.org/10.1080/07388550290789513

Chisti Y. Microalgae as sustainable cell factories. Environ Eng Manag J 2006; 5: 261-74.

Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007; 25: 294-306. http://dx.doi.org/10.1016/j.biotechadv.2007.02.001

Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 2002; 15: 377-90. http://dx.doi.org/10.1023/A:1020238520948

Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 2006; 40: 2799-815. http://dx.doi.org/10.1016/j.watres.2006.06.011

Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM. The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 1995; 36: 707-12.

Miura Y, Sode K, Narasaki Y, Matsunaga T. Production of γ-linolenic acid from the marine green alga Chlorella sp. NKG 042401 FEMS Microbiol Lett 1993; 107: 163-8.

Matsunga T, Takeyama H, Miura Y, Yamazaki T, Furuya H, Soda K. Screening of marine cy- anobacteria for high palmitoleic acid production, FEMS Microbiol Lett 1995; 133: 137-41.

Cardozo KHM, Guaratini T, Barros MP, et al. Metabolites from algae with economical impact. Compart Biochem Physiol 2007; C146: 60-78. http://dx.doi.org/10.1016/j.cbpc.2006.05.007

Mokady S, Sukenik A. A marine unicellular alga in diets of pregnant and lactating rats as a source of 3 fatty acids for the developing brain of their progeny. J Sci Food Agric 1995; 68: 133-139.

Leblond JD, Chapman PJ. A survey of the sterol composition of the marine dinoflagellates Karenis brevis, Karena mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class Dinophyceae. J Phycol 2002; 38: 670-82. http://dx.doi.org/10.1046/j.1529-8817.2002.01181.x

Ponomarenko LP, Stonik IV, Aizdaicher NA, et al. Sterols of marine microalgae Pyramimonas cf. cordata (prasinophyta), Atteya ussurensis sp. nov. (Bacollariophyta) and a spring diatom bloom from lake Baikal. Compart Biochem Physiol 2004; B138: 65-70.

Del Río E, Acién G, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG. Efficient one-step production of astaxanthin by microalga Haematococcus pulvialis in continuous culture. Biotechnol Bioeng 2005; 91: 808-15. http://dx.doi.org/10.1002/bit.20547

Hejazi MA, Andrysiewicz E, Tramper J, Wijffels RH. Effect of mixing rate on -carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biotechnol Bioeng 2003; 84: 591-6. http://dx.doi.org/10.1002/bit.10791

Lebeau T, Gaudin P, Junter G-A, Mignot L, Robert J-M. Continuous marennin production by agar-entrapped Haslea ostrearia using a tubular photobioreactor with internal illumination. Appl Microbiol Biotechnol 2000; 54: 634-40. http://dx.doi.org/10.1007/s002530000380

Matsunga T, Takeyama H, Sudo H, et al. Glutamate production from CO2 by marine Cyanobacterium Synechococcus sp using a novel biosolar reactor employing light-diffusing optical fibers. Appl Biochem Biotechnol 1991; 28/29: 157-67. http://dx.doi.org/10.1007/BF02922597

Hammingson JA, Furneux RH, Murray-Brown HV. Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachloan et Oliveira. Carbohyd Res 1996; 287: 101-15. http://dx.doi.org/10.1016/0008-6215(96)00057-2

Hayashi L, de Paula EJ, Chow F. Growth rate and carrageenan analysis in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J Appl Phycol 2007; 19: 393-9. http://dx.doi.org/10.1007/s10811-006-9135-6

Torres MR, Sousa APA, Filho EATS, et al. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohyd Res 2007; 342: 2067-74. http://dx.doi.org/10.1016/j.carres.2007.05.022

Liu Y, Xu L, Cheng N, Lin L, Zhang C. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J Appl Phycol 2000; 12:125-30. http://dx.doi.org/10.1023/A:1008132210772

Wang SC, Bligh SWA, Shi SS, et al. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int J Biol Macromol 2007; 41: 369-75. http://dx.doi.org/10.1016/j.ijbiomac.2007.05.008

Das BK, Pradhan J, Pattnaik P, et al. Production of antibacterials from the freshwater alga Euglena viridis (Ehren). World J Microbiol Biotechnol 2005; 21: 45-50. http://dx.doi.org/10.1007/s11274-004-1555-3

Martinez-Lozano SJ, Garcia S, Heredia N, Villareal-Rivera L, Garcia-Pailla CA. Antifungal activity of extract of Sargassum filipendula. Phyton 2000; 66: 179-182.

Sato Y, Murakami M, Miyazawa K, Hori K. Purification and characterization of a novel lectin from a freshwater cyanobacterium Oscillatoria agardhii. Compar Biochem Physiol 2000; B125: 169-77. http://dx.doi.org/10.1016/S0305-0491(99)00164-9

Venkataraman LV, Becker WE, Shamala TR. Studies on the cultivation and utilization of alga Scenedesmus acutus as a single cell protein. Life Sci 1977; 20: 223-33. http://dx.doi.org/10.1016/0024-3205(77)90316-2

Chae SR, Hwang EJ, Shin HS. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 2006; 97: 322-9. http://dx.doi.org/10.1016/j.biortech.2005.02.037

Xiong W, Li X, Xiang J, Wu Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 2008; 78: 29-36. http://dx.doi.org/10.1007/s00253-007-1285-1

Tredici MR. Photobioreactors. In: Flickinger MC, Drew SW. editors. Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. John Wiley&Sons. New York, Chichester, Weinheim, Brisbane, Singapore, Torento 1999; pp. 395-419.

Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 2001; 57: 287-93. http://dx.doi.org/10.1007/s002530100702

Bourlag NE. Contributions of Conventional Plant Breeding to Food Production. Science 1980; 219: 689-93. http://dx.doi.org/10.1126/science.219.4585.689

Tyler VE. Phytomedicines: back to the future. J Nat Prod 1999; 62: 1589-92.

Balunas MJ, Kinghorn DA. Drug discovery from medicinal plants. Life Sci 2005; 78: 431-41. http://dx.doi.org/10.1016/j.lfs.2005.09.012

Verpoorte R. Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Disc Today 1988; 3: 232-8. http://dx.doi.org/10.1016/S1359-6446(97)01167-7

De Luca V, St Pierre B. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 2000; 5: 168-73. http://dx.doi.org/10.1016/S1360-1385(00)01575-2

Payne GF, Bringi V, Prince C, Shuler ML. Plant cell and tissue culture in liquid systems. Munich. Hanser Publications. 1991; pp. 1-10.

Naik GR. Micropropagation studies in medicinal and aromatic plants. In: Khan I A, Khanun A. Eds. Role of biotechnology in medicinal and aromatic plants. Ukaz Publications, Hyderabad 1998; pp. 50-6.

Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 2007; 98: 560-4. http://dx.doi.org/10.1016/j.biortech.2006.02.007

Ravishankar GA, Bhyalakshmi N, Rao RS. Production of food additives. In: Ramawat KG, Merillon JM editors. Biotechnology: secondary metabolites 1999; pp. 89-110.

Alfermann AW, Petersen M. Natural products formation by plant cell biotechnology. Plant Cell Tissue Organ Cult 1995; 43: 199-205. http://dx.doi.org/10.1007/BF00052176

Stöckigt J, Obitz P, Flakenhagen H, Lutterbach R, Endress R. Natural products and enzymes from plant cell cultures. Plant Cell Tissue Organ Cult 1995: 43: 97-109. http://dx.doi.org/10.1007/BF00052163

Rao SR, Ravishankar GA. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 2002; 20: 101-53. http://dx.doi.org/10.1016/S0734-9750(02)00007-1

See KS, Bhatt A, Keng CL. Effect of sucrose and methyl jasmonate on biomass and anthocyaninproduction in cell suspension culture of Melastoma malabathricum (Melastomaceae). Rev Biol Trop 2011; 59: 597-606.

Khlebnikov A, Dubuis B, Kut OM, Prenosil JE. Growth and productivity of B. vulgaris in culture in fluidized bed reactors. Bioproc Biosys Eng 1995; 14: 51-6. http://dx.doi.org/10.1007/BF00369852

George PS, Ravishankar GA. Induction of crocin and crocetins in callus cultures of gardenia jasminoides ellis. Food Biotechnol 1995; 9: 29-38. http://dx.doi.org/10.1080/08905439509549883

Robins RJ, Rhodes MJC. The stimulation of anthraquinone production by Cinchona ledgeriana cultures with polymeric adsorbents. Appl Microbiol Biotechnol 1986; 24: 35-41. http://dx.doi.org/10.1007/BF00266282

Dorenburg H, Knorr D. Production of phenolic flavor compounds with cultured cells and tissues of Vanilla species. Food Biotechnol 1996; 10: 75-92. http://dx.doi.org/10.1002/1097-0010(200002)80:3

Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA.Biosynthesis of the flavour precursors of onion and garlic. J Exp Bot 2004; 55: 1903-18. http://dx.doi.org/10.1093/jxb/erh138

Hrazdina G. Aroma production by tissue cultures. J Agric Food Chem 2006; 54:1116-23. http://dx.doi.org/10.1021/jf053146w

Suvarnalatha G, Narayan MS, Ravishankar GA, Venkataraman LV. Flavour production in plant cell cultures of basmati rice (Oryza sativa L). J Sci Food Agr 1994; 66: 439-42. http://dx.doi.org/10.1002/jsfa.2740660403

Jalal MA, Collin HA. Secondary metabolism in tissue culture of Theobroma cacao. New Phytologist 1979; 83: 343-9. http://dx.doi.org/10.1111/j.1469-8137.1979.tb07458.x

Hwang SJ. Rapid in Vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J Plant Biol 2006; 49: 267-70. http://dx.doi.org/10.1007/BF03031153

Hayashi H, Fukui H, Tabata M. Examination of triterpenoids produced by callus and cell suspension cultures of Glycyrrhiza glabra. Plant Cell Reports 1988; 7: 508-11. http://dx.doi.org/10.1007/BF00272743

Van der Wel H, Ledeboer AM. The thaumatins. In: Stumpf PK, Conn EE. Ed. The Biochemisty of Plants: A Comprehensive Treatise, Vol 15. Academic Press, New York, 1989; pp. 379-91.

Chung IS, Kang YM, Oh JH, Kim T, Lee HJ, Chae YA. Continuous suspended cell culture of Mentha piperita in cell-recycled air-lift bioreactor. Biotechnol Techniq 1994; 8: 789-92. http://dx.doi.org/10.1007/BF00152885

Mulder-Krieger TH, Verpoorte R, Baerheim Svendsen A, Scheffer JJC. Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell, Tissue and Organ Cult 1988; 13: 85-154. http://dx.doi.org/10.1007/BF00034451

Scragg AH. The production of aroma by plant cell cultures. Adv Biochem Eng Biotechnol 1997; 55: 239-63. http://dx.doi.org/10.1007/BFb0102068

Salem KMSA, Charlwood BV. Accumulation of essential oils by Agrobacterium tumefaciens-transformed shoot cultures of Pimpinella anisum. Plant Cell, Tissue and Organ Cult 1995; 40: 209-15. http://dx.doi.org/10.1007/BF00048125

Lau K-M, He Z-D, Dong H, Fung K-P, But PP-H. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum. J Ethnopharmacol 2002; 83: 63-71. http://dx.doi.org/10.1016/S0378-8741(02)00192-7

Liu CZ, Murch SJ, El-Demerdash M, Saxena PK. Artemisia judaica L.: micropropagation and antioxidant activity. J Biotechnol 2004; 110: 63-71. http://dx.doi.org/10.1016/j.jbiotec.2004.01.011

Ludwig-Müller J, Georgiev M, Bley T. Metabolite and hormonal status of hairy root cultures of Devil’s claw (Harpagophytum procumbens) in flasks and in a bubble column bioreactor. Process Biochem 2008: 43: 15-23. http://dx.doi.org/10.1016/j.procbio.2007.10.006

Li RW, Leach DN, Myers SP, Lin GD, Leach GJ, Waterman PG. A new anti-inflammatory glucoside from Ficus racemosa. L. Planta Medica 2004; 70: 421-6. http://dx.doi.org/10.1055/s-2004-818969

Choi H-K, Kim SI, Son J-S, Hong S-S, Lee H-S, Lee H-J. Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis. Enz Microb Technol 2000; 27: 593-8. http://dx.doi.org/10.1016/S0141-0229(00)00255-6

Magnotta M, Murata J, Chen J, De Luca V. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don. by alkaloid and enzymatic profiling. Phytochem 2006; 67: 1758-64. http://dx.doi.org/10.1016/j.phytochem.2006.05.018

Ao C, Li A, Elzaawely AA, Xuan TD, Tawata S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Cont 2008; 19: 940-8. http://dx.doi.org/10.1016/j.foodcont.2007.09.007

Wilkinson JM, Hipwell M, Ryan T, Cavanagh HMA. Bioactivity of Backhousia citriodora: Antibacterial and Antifungal Activity. J Agric Food Chem 2003; 51:76-81. http://dx.doi.org/10.1021/jf0258003

Falcão HS, Mariath IR, Diniz MFFM, Batista LM, Barbosa-Filho JM. Plants of the american continent with antiulcer activity. Phytomed 2008; 15: 132-46. http://dx.doi.org/10.1016/j.phymed.2007.07.057

Gomord V, Gaye L. Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 2004; 7: 171-81. http://dx.doi.org/10.1016/j.pbi.2004.01.015

Lee JH, Kim NS, Kwon TH, Jang YS, Yang MS. Increased production of human granulocyte-macrophage colony stimulating factor (hGM-CSF) by the addition of stabilizing polymer in plant suspension cultures. J. Biotechnol 2002; 96: 205-11. http://dx.doi.org/10.1016/S0168-1656(02)00044-5

Guan Z-J, Guo B, Huo Y-L, Guan Z-P, Wei Y-H. Overview of expression of hepatitis B surface antigen in transgenic plants. Vaccine 2010; 28: 7351-62. http://dx.doi.org/10.1016/j.vaccine.2010.08.100

Kwon TH, Seo JE, Kim J, Lee JH, Jang YS, Yang MS. Expression and secretion of heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol Bioeng 2003; 81: 870-5. http://dx.doi.org/10.1002/bit.10528

Kwon S, Jo S, Lee O, Choi S, Kwak S, Lee H. Transgenic ginseng cell lines that produce high levels of a human lactoferrin. Planta Medica 2002; 69: 1005-8. http://dx.doi.org/10.1055/s-2003-45146

Daniell H, Singh ND, Mason H, Streatfield SJ. Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Sci 2009; 14: 669-79. http://dx.doi.org/10.1016/j.tplants.2009.09.009

Sharp JM, Doran PM. Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 2001; 73: 338-46. http://dx.doi.org/10.1002/bit.1067

Zhong, J. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Biochem Eng Biotechnol 2001; 72: 1-26. http://dx.doi.org/10.1007/3-540-45302-4_1

Eibl R, Eibl D. Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH Eds. Plant biotechnology and transgenic plants. Marcel Dekker, New York 2002; pp. 163-99.

De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M. A high-rate perfusion bioreactor for plant cells. Biotechnol Bioeng 2006; 95: 1126-37. http://dx.doi.org/10.1002/bit.21077

Choi YE, Kim YS, Paek KY. Types and design of bioreactors for hairy root culture. In: Dutta Gupta, S. and Ibaraki, Y. Editors. Plant tissue culture engineering. Series: Focus on biotechnology Vol. 6. Dorderecht, Springer Verlag 2006; pp. 161-71.

Sivakumar G. Bioreactor technology: A novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 2006; 1: 1419-27. http://dx.doi.org/10.1002/biot.200600117

Su WW, Lee K-T. Plant cell and hairy root cultures-process characteristics, products, and applications. In: Yang ST editor. Bioprocessing for value-added products from regenewable resources. Amsterdam; Elsevier B.V. 2007; pp. 263-92.

Huang T-K, McDonald KA. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 2012; 30: 398-409. http://dx.doi.org/10.1016/j.biotechadv.2011.07.016

Xu J, Ge X, Dolan MC. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 2011; 29: 278-99. http://dx.doi.org/10.1016/j.biotechadv.2011.01.002

Crawford KM, Zambryski PC. Plasmodesmata signaling: many roles, sophisticated status. Curr Opin Plant Biol 1999; 2: 382-7. http://dx.doi.org/10.1016/S1369-5266(99)00009-6

Doran PM. Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 2000; 11: 199-204. http://dx.doi.org/10.1016/S0958-1669(00)00086-0

Conrad U, Fiedler U. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production of physiological functions and pathogen activity. Plant Mol Biol 1998; 38: 101-9. http://dx.doi.org/10.1023/A:1006029617949

Shin YJ, Hong SY, Kwon TH, Jang YS, Yang, MS. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol Bioeng 2003; 82: 778-83. http://dx.doi.org/10.1002/bit.10635

Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Pur 1998; 13:45-52. http://dx.doi.org/10.1006/prep.1998.0872

Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27: 811-32. http://dx.doi.org/10.1016/j.biotechadv.2009.06.004

Hood EE, Woodard SL, Horn ME. Monoclonal antibody manufacturing in transgenic plants-myths and realities. Curr Opin Biotechnol 2002; 13: 630-5. http://dx.doi.org/10.1016/S0958-1669(02)00351-8

Drake PMW, Chargeleuge DM, Vine ND, van Dolleweerd CJ, Obregon B, Ma JKC. Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 2003; 52: 233-41. http://dx.doi.org/10.1023/A:1023909331482

Spier RE. History of animal cell technology. In. Spier RE Ed. Encyclopedia of cell technology, Vol. 2, New York. Wiley, 2000: pp. 853-72.

Kretzmer G. Industrial processes with animal cells. Appl Microbiol Biotechnol 2002: 59: 135-42. http://dx.doi.org/10.1007/s00253-002-0991-y

Eagle H. Nutrition needs of mammalian cell sin tissue culture. Science 1955; 122(3168): 501-4. http://dx.doi.org/10.1126/science.122.3168.501

Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23:1147-57.

Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns 2010; 36: 450-60. http://dx.doi.org/10.1016/j.burns.2009.08.016

Bär A, Haverich A, Hilfiker. Cardiac tissue engineering: “Reconstructing the mother of life”. Scand J Surg 2007; 96: 154-8.

Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med 2006; 1199-205. http://dx.doi.org/10.1164/rccm.200603-406OC

Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems: State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnol 2006; 50: 163-79. http://dx.doi.org/10.1007/s10616-006-6336-4

Kumar A, Pati NT, Sarin SK. Use of stem cells for liver diseases-Current scenario. J Clin Exp Hepatol 2011; 1: 17-26.

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Blastocysts embryonic stem cell lines derived from human. Science 1998; 282(5391): 1145-7. http://dx.doi.org/10.1126/science.282.5391.1145

Mayhall EA, Paffett-Lugassy N, Zon LI. The clinical potential of stem cells. Curr Opin Cell Biol 2004; 16: 713-20. http://dx.doi.org/10.1016/j.ceb.2004.09.007

Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005; 23: 862-71. http://dx.doi.org/10.1038/nbt1119

Ting AE, Mays RW, Frey MR, Van`t Hof W, Medicetty S, Deans R. Therapeutic pathways of adult stem cell repair. Crit Rev Oncol Hematol 2008; 65: 81-93. http://dx.doi.org/10.1016/j.critrevonc.2007.09.007

George JC. Stem cell therapy in acute myocardial infarction: a review of clinical trials. Transl Res 2010; 155: 10-9. http://dx.doi.org/10.1016/j.trsl.2009.06.009

Haraguchi Y, Shimizu T, Yamato M, Okano T. Concise review: Cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 2012; 1: 136-41. http://dx.doi.org/10.5966/stem.2011-0030

Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012; 379(9817): 713-20. http://dx.doi.org/10.1016/S0140-6736(12)60028-2

Cohen M. Secreted Matrix™ and Matrix NC-138™. White paper. Mountainside, NJ, USA: Proteoderm Inc.

Rinaldo A. Healing beauty?. EMPO reports 2008; 9: 1073-7. http://dx.doi.org/10.1038/embor.2008.200

Ra JC, Kim BH, Lee HY, Woo SK, Park H, Kim H. Multipotent stem cells derived from placenta tissue and cellular therapeutic agents comprising the same. USP 20070243172.

FDA Requires Boxed Warning for All Botulinum Toxin Products. 2009 Published April 20; cited 2012 Feb. 15]. Available from http://www.fda.gov/newsevents/newsroom/ pressannouncements/ucm149574.htm

Schmidt C. FDA approves first cell therapy for wrinkle-free visage. Nature Biotechnol 2011; 29: 674-5. http://dx.doi.org/10.1038/nbt0811-674

Downloads

Published

2012-04-04

How to Cite

Sarmidi, M. R., & El Enshasy, H. A. (2012). Biotechnology for Wellness Industry: Concepts and Biofactories. International Journal of Biotechnology for Wellness Industries, 1(1), 3–30. https://doi.org/10.6000/1927-3037.2012.01.01.01

Issue

Section

Articles