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Quantile Regression for Area Disease Counts: Bayesian Estimation 
using Generalized Poisson Regression 

Peter Congdon* 

School of Geography, Queen Mary University of London, UK 
Abstract: Generalized linear models based on Poisson regression are commonly applied to count data for area 
morbidity outcomes, focused on modelling the conditional mean of the response as a function of a set of risk factors. 
Mean regression models may be sensitive to outliers and provide no information on other distributional features of the 
response. We consider instead a Poisson lognormal hierarchical approach to quantile regression of spatially configured 
count data, allowing for observed risk factors and spatially correlated unobserved risk factors. This technique has the 
advantage that a profile of the relative outcome risk across quantiles can be obtained, including estimates of uncertainty 
(e.g. the uncertainty attaching to 2.5% or 5% relative risk quantiles). An application involves counts of emergency 
hospitalisations for self-harm for 6791 small areas in England. Known risk factors are area deprivation, a measure of 
social fragmentation and a measure of rural status. It is shown that impact of these predictors varies between quantiles, 
and that hierarchical quantile regression generally produces narrower risk intervals, except for outlier areas, and leads to 
a higher number of areas being classed as high risk. 
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1. BACKGROUND 

Community interventions to tackle health 
inequalities are often based on area variations in 
disease relative risk, or in relative risks of morbidity 
related outcomes (e.g. hospitalisations). For example, 
area-based interventions have been applied to reduce 
suicide and non-fatal self-harm [1]. Establishing the 
epidemiology of such variations is also important as a 
basis for targeted intervention. To this end regression 
methods may be applied to disease counts for 
administrative areas [2] to assess significant ecological 
risk factors.  

In particular, generalized linear models (GLMs) 
based on Poisson regression [3] are commonly applied 
to data on disease counts, with the wider analytical 
framework based on GLMs denoted as Bayesian 
disease mapping [4]. In a generalized linear model, the 
focus is on modelling the conditional mean of the 
response as a function of a set of risk factors. 
Inferences about relative disease risks, and about 
areas with elevated risk, are then based on the 
conditional mean regression model. In particular, one 
may consider credible intervals for relative risks, or 
exceedance probabilities [5]. 

Mean regression models may be sensitive to 
outliers and provide no information on other 
distributional features of the response. By contrast, 
quantile regression considers either the conditional 
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median or other conditional quantiles of the response 
variable [6]. There is little research comparing how 
inferences about modelled spatial patterns of disease 
risk are affected by using a quantile regression 
approach rather than conditional mean generalized 
linear models.  

In this paper, we provide an assessment of how 
spatial patterns of extreme relative disease risk may be 
affected by using quantile regression applied to area 
counts of disease, mortality, or hospitalisations. A 
Bayesian inference and estimation strategy is used. 
We consider a hierarchical approach to quantile 
regression of spatially configured count data, allowing 
for observed risk factors and spatially correlated 
unobserved risk factors. An application involves counts 
of emergency hospitalisations for self-harm for 6791 
small areas in England over a five year period. Known 
risk factors are area deprivation, a measure of social 
fragmentation and a measure of rural status.  

2. METHODS OVERVIEW AND LITERATURE 

Bayesian disease mapping is based around 
generalized linear models for typically discrete 
responses (e.g. counts of deaths or hospitalisations for 
administrative areas). Such models typically involve 
conditional mean estimation using both known risk 
factors and random effects to represent unknown risks 
or overdispersion. However, mean regression models 
may be sensitive to outliers and provide no information 
on factors affecting other distributional features of the 
response.  

By contrast, quantile regression estimates the 
relationship between the !th  quantile QY(! | X)  of the 
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response Y  and covariates X  [6] Quantile regression 
was originally developed for continuous responses as 
count responses do not have continuous quantiles. For 
! " (0,1)  and continuous Y , frequentist quantile 

regression involves minimizing !
n

i=1
"# (Yi $ Xi

T%# ) , where 

!" (ui ) = ui (" # I(ui < 0)),  and ui = Yi ! Xi
T"# .  

Following [7], a Bayesian approach to quantile 
regression is obtained using an Asymmetric Laplace 
distribution (ALD), with density function 

ALD(y | !" ,#" ,") =
"(1$")
#"

exp $ %" (y$!" )
#"

&
'

(
),   

where !"  is a regression term, !  is the quantile, and 
!"  is a scale parameter. This distribution can in turn be 
represented as a scale mixture of normals [8]. Thus for 
observations i =1,.., n,  and assuming 
Yi ! ALD("#i ,$# ,#),  one has 

Yi = !"i + #"W"i +
2W"i$"
"(1%")
&
'

(
)
0.5
V"i ,   

where !"i  is the regression term, !" =
(1#2")
"(1#") ,  

!" > 0,W"i # Exp(!" ),  and V!i " N(0,1).   

To extend quantile regression to count data, [9] 
propose adding uniform noise U  to count responses, 

giving Z = Y+U . With offsets ei they apply quantile 
regression of the form 

QZi (! | Xi ) = "!i = !+ exp(Xi
T#! )+ ln(ei ).  

A Bayesian quantile regression adaptation to spatial 
count data is set out by [10], based on the procedure of 
[9]. Spatial quantile regression has been studied by 
other papers, both from Bayesian and frequentist 
perspectives, generally with continuous responses 
such as house prices, house rentals, or medical 
expenditures (e.g. [11], [12]). Reich et al. [13] adopt a 
spatial Bayesian approach to a continuous (positive) 
response, namely maximum ozone readings.  

Implications of a quantile regression approach to 
inferences from disease mapping for count lattice data 
using generalized Poisson regression are relatively 
unexplored. Dreassi et al. [14] provide a 
semiparametric Negative Binomial M-quantile 
regression method applied to count lattice data, which 
involves frequentist estimation. Requia et al. [15] use 
lattice disease data but with a continous response 

(albeit based on originally count data, cardiorespiratory 
disease hospitalisations) and frequentist quantile 
regression, enabling use of the R package quantreg. 
Chiu et al. [16] also use a continous response. 
Transformations of count outcomes are sometimes 
used, but this is subject to pitfalls [17]. So a likelihood 
which reflects the count nature of the response is 
preferred.  

3. QUANTILE REGRESSION FOR SPATIAL 
DISEASE COUNTS  

In this paper, we consider quantile regression for 
area disease counts, overdispersed in relation to the 
Poisson assumption, and adopt a scale mixture version 
of the ALD within a hierarchical Poisson lognormal 
representation to account for overdispersion. 
Specifically, let observed and expected disease counts 
for areas i  be denoted {Yi,Ei},  where Ei  are offsets 
based on demographic standardisation, subject to 
!
i
Yi =!

i
Ei.  The Ei  are obtained either by multiplying 

area populations by the region-wide outcome rate, or 
multiplying age-specific populations by region-wide age 
specific outcome rates. Then subject to the necessity to 
take account of overdispersion, the Yi  may be taken 
as Poisson, 

Yi ! Poi(µi ),             (1) 

µi = Ei exp(!i ).   

The quantities Ri = exp(!i )  represent relative 
disease risks, which have value 1  for the entire region 
when !

i
Yi =!

i
Ei .  

Consider a conventional Poisson-lognormal 
distribution (PLN) to represent overdispersion [18]. 
Mahaki et al. [19] compare the PLN and negative-
binomial representations to modelling spatial relative 
risks for overdispersed disease counts, and mention 
that the Poisson-lognormal representation is 
advantageous in terms of readily being able to include 
spatially configured residual effects. Moreover the tails 
of the log-normal are heavier than for the gamma 
distribution, and for data with outliers, the PLN model 
may give a better fit than the negative-binomial model 
when the counts are overdispersed [20].  

Hence the PLN is advantageous as a basis for 
introducing quantile regression at the second stage, as 
in the current paper. Here we modify the PLN 
representation so that a scale mixture ALD is applied at 
the second stage specific to quantiles !,  and Poisson 
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sampling applies at the first stage. The second stage 
regression is focussed on estimating conditional 
quantiles in relative risks, which are latent quantities of 
primary epidemiological interest. Thus for observed 
and expected disease counts {Yi,Ei},  we specify for 
quantiles ! =1,.., A,   

Yi ! Poi(µ"i ),            (2) 

µ!i = Ei exp("!i ),   

!"i # N(Xi$" + s"i + %"W"i ,
2W"i&"
"(1'") ),   

W!i " Exp(#! ),   

!"i =  Xi!" + s"i ,   

R!i = exp("!i ).   

Spatially correlated effects s!i  are included in the 
regression term for quantile !  to represent spatially 
clustered, but unobserved, risk factors for areas i, 
these being quantile specific (cf. [11, 21]). The prior 
density for the spatial effects s!i  is discussed in the 
next section. Of substantive importance are conditional 
quantile regression coefficient estimates, and relative 
risk inferences from quantile regression, as against 
conditional mean regression, though quantile and 
conditional mean regression are obtained by 
mathematically distinct approaches.  

The W!i  in equation (2)  are measures of outlier 
status. Areas with higher W!i  have higher variances 
(lower precisions) and hence diminished influence on 
the likelihood. Relative disease risks for areas with high 
W!i  are likely to have a wide uncertainty interval. 

4. DETECTING ELEVATED RELATIVE RISK 

In disease mapping applications the canonical 
model involves observed and expected disease counts 
{Yi,Ei}, i =1,.., n , typically overdispersed. The 
convolution or BYM prior of [3] is often used in 
analyzing area disease variations and to identify areas 
with elevated relative risk [5]. Thus as per equation (1) , 
one has a conditional mean regression 

!i, BYM = Xi"+ ui + si,   

where ui  is an independent and identically distributed 

( iid ) normal random effect ui ! N(0,"u
2 ), and the si  

are spatially dependent, or equivalently 

!i, BYM " N(Xi#+ si,$u
2 ).            (3) 

There are two sets of random effects, with si  
representing a relatively smooth underlying spatially 
dependent effect, and ui  representing remaining 
overdispersion or idiosyncractic area effects. This 
model implies shrinkage and spatial smoothing to a 
pattern of underlying risks by borrowing strength across 
neighbouring locations, so producing increased 
precision in risk estimates [22]. With spatial interaction 
represented by binary adjacency, the si  follow a 
conditional autoregressive prior, 

si | s[i]  ! N "
j#Ni

s j / Li,$s
2 / Li

%

&
''

(

)
**,  

_3.2_
  

with s[i]  denoting s  effects excluding si , and Li  the 
number of areas adjacent to area i  in its locality Ni  . 

Bayesian disease mapping models often focus on 
assessing elevated relative risk in different areas. For 
Markov Chain Monte Carlo (MCMC) iterations 
t =1,.., T , let Ri,BYM

(t) = exp(!i, BYM
(t) )  be sampled relative 

risks in area i  at iteration t  based on the conditional 
mean regression. Extreme quantiles of relative risk, 
such as the 2.5% and 97.5% quantiles, are estimated 
from the sampled Ri,BYM

(t) .  If there are T  samples of 
the conditional mean relative risk from the BYM model, 
the 0.025 percentile of these T  samples is the 
estimate of the 2.5% risk quantile. The uncertainty 
associated with this estimate is not available from a 
single MCMC run. Elevated risk may be indicated by 
areas with 95% credible intervals for Ri,BYM  entirely 
above 1, that is with both 2.5% and 97.5% quantiles 
exceeding 1. Less stringent risk classification might be 
based on 90% or 80% credible intervals being entirely 
above 1. 

By contrast, under the quantile regression (2), 
extreme conditional quantiles of relative risk may be 
estimated from quantile specific regression on risk 
factors or spatial random effects. Thus relative risks for 
quantile !  are estimated from sampled 
R!i
(t) = exp(Xi"!

(t) + s!i
(t) ),  with full posterior densities 

available for relative risk quantiles R!i . Elevated risk is 
then indicated by areas with posterior mean estimates 
for the 2.5% and 97.5% quantiles {R0.025, i;R0.975, i}  
both exceeding 1. In view of the epidemiological 
emphasis on detecting elevated (as opposed to 
depressed) relative risk, particular importance attaches 
to impacts of predictors and spatial smoothing on lower 
quintiles such as R0.025, i .  If the focus is widened to 
detecting areas with depressed risk, then this is 
indicated by areas having posterior mean estimates for 
{R0.025, i;R0.975, i}  both under 1. 
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It should be noted that this quantile regression 
approach to assessing extreme relative risks offers an 
alternative and complementary perspective to the 
conventional Bayesian disease mapping (BDM) 
methodology based on conditional mean regression. 
There is no implicit assumption of mathematical 
equivalence between (say) the 2.5 percentile of the 
posterior of the relative risk estimated via BDM 
conditional mean regression, and the 2.5th percentile 
of relative risk estimated via quantile regression. 
Quantile regression enables one to assess influences 
of spatial covariates on extreme relative risks, whereas 
conventional BDM estimates of relative risk follow from 
a conditional mean regression on spatial covariates. 
Characterizing extreme rates or risk is important not 
just in health but other applications (e.g. climatic, 
environmental). As Zhou et al. [23] mention "Therefore 
improving the ability to characterize extreme 
temperature events is of critical importance. To this 
end, quantile regression is an important tool for 
characterizing the tail probabilities". Similarly Reich et 
al. [13] mention that "correctly estimating the tail 
probability is critically important in studying the health 
effects of ozone exposure, and has policy implications". 

5. CASE STUDY IMPLEMENTATION 

The dataset considered consists of counts Yi  of 
emergency hospitalisations for self-harm for n = 6791  
small areas (middle level super output areas, MSOAs) 
in England over the five year period (financial years 
2010/11 to 2014/15). These MSOAs are subdivisions of 
326 local government units ("local authorities"). The 
average event count is 79, and the variance of event 
counts is 2815. There are four areas with unknown 
self-harm counts, not released as the count is 5 or 
under. For these areas truncated Poisson sampling is 
used with upper limit 5.  

Known risk factors are area deprivation, a measure 
of social fragmentation and a measure of rural status. 
Deprivation (Z1)  is measured by the 2015 Index of 
Multiple Deprivation (IMD) [24], with most indicators 
being based on the period 2012/13. Social 
fragmentation (e.g. [25]) is defined by indicators from 
the 2011 UK Census, including measures of marital 
status, population turnover, single person households 
and private sector renting. Rural status is based on 
accessibility indicators (access to services and 
facilities) developed by as part of the 2015 IMD 
development. These are road distances to the nearest 
post office, nearest primary school, nearest general 
store/supermarket, and distance to a doctors (GP) 
surgery, with rural areas expected to have lower 

accessibility. The social fragmentation and rurality 
scores (Z2 , Z3)  are obtained by summing z-scores on 
constituent indicators. For the subsequent regression 
all three predictors are transformed to a common [0,1] 
scale, so that for areas i  and index j , 
Xij = (Zij ! Zj,min ) / (Z j,max ! Zj,min ).   

Regression analysis of the BYM, as in (3), and 
hierarchical QR (HQR) model, as in (2), is carried out in 
WINBUGS14 [26]. Inferences are based on the second 
halves of 20,000 two chain runs with convergence 
assessed using Brooks-Gelman-Rubin diagnostics [27]. 
Normal N(0,100) priors are adopted on !  parameters, 
and gamma priors with shape 1 and rate 0.001 on 
precision (inverse scale) parameters 
1 / !u

2 ,1 / !s
2 ,1 / !"s

2 ,  and 1 / !" .  Model fit is based on the 
Watanabe-Akaike information criterion (WAIC) [28] 
evaluated for each of five quantiles 
! = 0.025, 0.25, 0.5, 0.75  and 0.975 ; a possible 
alternative is the Deviance Information Criterion or DIC 
[29]. The WAIC is based on the sum LLWAIC  of log 
posterior mean likelihoods for each observation, and a 
complexity measure CWAIC  based on summing the 
posterior variances of posterior mean log-likelihoods.  

Model checks are provided by posterior predictive 
p-tests [30]. These involve sampling replicate data Yrep  
(or Yrep,! ) from the particular model being estimated 

and evaluating a test statistics T(Yrep;!)  and T(Y;!)  
for replicate and actual data. The test statistics 
Pr[T(Yrep;!) > T(Y;!)]  should be within the range 0.1 to 
0.9 for a model that satisfactorily reproduces the actual 
data. Three test statistics are used: the chi square 
!(Yrep, i "µi )

2 /µi  (for BYM) or !(Yrep,", i #µ"i )
2 /µ"i  

(for HQR); the mean absolute deviation 
! | Yrep, i "µi | /n  (for BYM) or ! | Yrep,", i #µ"i | /n  (for 

HQR); and the maximum observation, max(Yrep, i )  (for 

BYM) and max(Yrep,!, i )  (for HQR). The scaled 
deviance is also obtained as this should be 
approximately n  for Poisson data [31]. 

6. CASE STUDY: RESULTS 

Table 1 presents comparative fit and model checks 
for the BYM model and the HQR model estimated at 
quantiles ! = 0.025, 0.25, 0.5, 0.75  and 0.975.  In terms of 
models estimating central relative risk, the median 
quantile regression has a lower WAIC than the 
conditional mean BYM model. Posterior predictive 
checks are satisfactory for all the models, and credible 
intervals for the scaled deviance include n . 
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Table 1: Model Fit and Checks* 

 (a) Model Fit 

HQR Quantile LLWAIC CWAIC WAIC 

 0.025 -22884 3164 52097 

 0.25 -22871 3217 52177 

 0.50 -22823 3216 52078 

 0.75 -22828 3252 52160 

 0.975 -22840 3222 52125 

BYM  -22837 3211 52096 

(b) Model checks 

 Posterior Predictive P-tests   

HQR Quantile Chi-square Mean absolute deviation  Maximum 

 0.025 0.25 0.38 0.59 

 0.25 0.26 0.38 0.60 

 0.50 0.46 0.53 0.60 

 0.75 0.32 0.39 0.55 

 0.975 0.23 0.30 0.56 

BYM  0.42 0.49 0.57 

Scaled Deviance    

HQR Quantile Mean 2.5% 97.5% 

 0.025 6942 6699 7167 

 0.25 6936 6713 7165 

 0.50 6838 6609 7072 

 0.75 6867 6637 7098 

 0.975 6896 6682 7121 

BYM  6869 6653 7101 

*Abbreviations: HQR: Hierarchical Quantile Regression; BYM: Besag et al. Spatial Model; LLWAIC: Total of log posterior mean likelihoods; CWAIC: Complexity Term in 
WAIC; WAIC: Watanabe-Akaike information criterion. 

 

Table 2: Regression Coefficients, BYM vs Hierarchical Quantile Regression 

   Posterior Summary 

BYM   Mean 2.5% 97.5% 

  Intercept -0.59 -0.62 -0.56 

  IMD (Deprivation) 2.00 1.94 2.06 

  Rurality -0.83 -0.90 -0.76 

  Social Fragmentation 0.40 0.30 0.49 

HQR Quantile     

 0.025 Intercept -0.71 -0.74 -0.69 

  IMD (Deprivation) 2.01 1.96 2.07 

  Rurality -0.85 -0.91 -0.77 

  Social Fragmentation 0.39 0.31 0.50 
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(Table 2). Continued. 

 0.25 Intercept -0.67 -0.70 -0.64 

  IMD (Deprivation) 2.02 1.98 2.07 

  Rurality -0.86 -0.93 -0.79 

  Social Fragmentation 0.38 0.29 0.47 

 0.50 Intercept -0.59 -0.62 -0.56 

  IMD (Deprivation) 1.99 1.93 2.05 

  Rurality -0.84 -0.91 -0.77 

  Social Fragmentation 0.41 0.33 0.50 

 0.75 Intercept -0.52 -0.55 -0.49 

  IMD (Deprivation) 1.98 1.91 2.04 

  Rurality -0.81 -0.88 -0.74 

  Social Fragmentation 0.46 0.36 0.57 

 0.975 Intercept -0.49 -0.52 -0.45 

  IMD (Deprivation) 1.98 1.92 2.03 

  Rurality -0.78 -0.87 -0.71 

  Social Fragmentation 0.47 0.39 0.55 

 

Table 2 shows regression coefficients for the BYM 
and HQR regressions. All regressions show positive 
effects of deprivation and social fragmentation on self-
harm, and that deprivation is the stronger influence. All 
regressions show self-harm declining in more rural 
areas. However, the quantile regression sequence 
shows impacts of social fragmentation to increase for 
higher quantiles, while those for rurality attenuate. 

Table 3 shows the decile breaks in alternative 
estimates (posterior means) of central relative risk over 
the 6791 areas: the conditional mean under the BYM 
model and the conditional median under the 
hierarchical QR model. These are very similar between 
the two estimators. The correlation between the 
posterior means on the two estimators is 0.987. 

Histograms and density plots of the two estimates are 
shown in Figure 1.  

An England-wide map of the median relative risks 
from the HQR model is shown in Figure 2. The highest 
self-harm levels tend to be in Northern England, though 
some large towns in Southern England (except the 
South East) are also areas with high self-harm risks. 
Figure 3 contains averages of MSOA relative risks 
within twenty local authorities, ranked from the highest.  

Table 4 shows decile breaks in estimates of the 
2.5% quantile of relative risk, important in assessing 
excess relative risk. Under the BYM model these are 
point estimates obtained from the MCMC samples of 
the conditional mean relative risk, without any 
indication of sampling variability. Under the quantile 

Table 3: Decile Points, Estimates of Central Relative Risk 

Decile BYM (Mean) HQR (Median) 

0.1 0.43 0.46 

0.2 0.54 0.56 

0.3 0.64 0.65 

0.4 0.73 0.74 

0.5 0.84 0.84 

0.6 0.98 0.97 

0.7 1.16 1.14 

0.8 1.40 1.38 

0.9 1.76 1.71 
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Figure 1: Estimates of central relative risk. 

 

 
Figure 2: Median relative risks, self-harm. 
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Figure 3: Average self-harm relative risk (median HQR). 

 

Table 4: Decile Points, Estimates of 2.5% Quantile of Relative Risk 

Decile BYM HQR 

0.1 0.32 0.40 

0.2 0.41 0.49 

0.3 0.49 0.57 

0.4 0.57 0.65 

0.5 0.67 0.75 

0.6 0.79 0.87 

0.7 0.95 1.01 

0.8 1.16 1.23 

0.9 1.50 1.54 

 
regression model, estimates of the 2.5% quantile of 
relative risk are based on the coefficients for ! = 0.025  
shown in Table 2, and subject to shrinkage and spatial 
smoothing due to random effects borrowing strength 
across neighboring locations. The quantile regression 
estimates (posterior means) are shifted slightly 
upwards compared to the BYM point estimates. 
However, for 6673 of the 6791 areas the 95% credible 
interval for R0.025, i  obtained from quantile regression 
includes the BYM point estimate. 

Table 5 cross-tabulates areas with elevated risk 
under BYM and HQR models. Elevated risk under the 
BYM models is based on areas with both 2.5% and 
97.5% quantiles for Ri,BYM  exceeding 1. Elevated risk 
under the HQR model is based on posterior mean 
estimates for the 2.5% and 97.5% quantiles 

{R0.025, i;R0.975, i}  both exceeding 1. Of the 1857 areas 
with elevated risk according to the BYM model, such a 
classification is also obtained under quantile regression 
for 1825 areas. This demonstrates concordance in risk 
classification.  

However, quantile regression detects a higher 
number of areas (2094 vs. 1857) with elevated risk 
than under the BYM model. This may be due, for 
example, to borrowing strength in HQR estimates of 
the 0.025 quantile. Borrowing strength also affects 
HQR estimates of the 0.975 quantile, so that 95% 
intervals for relative risk under the quantile approach 
will tend to be narrower than under the BYM model. 
The exception to this would be in areas with high W!i . 
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Table 5: Cross-Tabulation of Elevated Relative Risk 

   BYM model 

   Not elevated Elevated Total 

Not elevated 4665 32 4697 

Elevated 269 1825 2094 Quantile Regression 

Total 4934 1857 6791 

 
Table 6: Relative Risk Intervals, Ashfield MSOAs 

  Self-Harm  Scaled Area Predictors  

BYM Point 
Estimates of 
RR Quantiles  

HQR RR 
Quantile 

Estimates at 
α=0.025 and 
α=0.975  

MSOA 
Code 

MSOA 
Name Y E IMD Rurality SF 

Posterior 
mean RR 

(BYM) 
0.025 0.975 

Posterior 
Median 

RR (HQR 
estimate 

for α=0.5) 

0.025 0.975 Normalized 
W 

5690 
Ashfield 

001 69 57.9 0.34 0.19 0.21 1.16 0.93 1.42 1.12 1.02 1.26 0.88 

5691 
Ashfield 

002 33 53.6 0.17 0.16 0.17 0.65 0.48 0.86 0.68 0.61 0.76 0.95 

5692 
Ashfield 

003 64 63.5 0.40 0.09 0.25 1.08 0.86 1.32 1.19 1.01 1.30 1.04 

5693 
Ashfield 

004 137 102.8 0.36 0.14 0.30 1.31 1.11 1.53 1.26 1.15 1.42 0.90 

5694 
Ashfield 

005 117 73.6 0.57 0.14 0.31 1.61 1.36 1.90 1.67 1.49 1.84 0.87 

5695 
Ashfield 

006 80 96.4 0.21 0.15 0.17 0.82 0.66 1.00 0.82 0.74 0.91 0.92 

5696 
Ashfield 

007 76 77.9 0.32 0.19 0.17 0.97 0.79 1.18 0.97 0.88 1.08 0.86 

5697 
Ashfield 

008 73 59.9 0.47 0.09 0.28 1.24 0.99 1.52 1.29 1.14 1.44 0.94 

5698 
Ashfield 

009 69 84.8 0.21 0.19 0.18 0.81 0.65 0.98 0.80 0.72 0.88 0.86 

5699 
Ashfield 

010 74 68.2 0.20 0.12 0.18 1.02 0.82 1.25 0.94 0.85 1.08 1.03 

5700 
Ashfield 

011 42 63.7 0.21 0.13 0.16 0.71 0.54 0.90 0.77 0.67 0.84 1.00 

5701 
Ashfield 

012 34 57.4 0.17 0.13 0.17 0.66 0.49 0.85 0.71 0.61 0.78 0.96 

5702 
Ashfield 

013 99 87.8 0.20 0.18 0.21 1.07 0.88 1.27 0.95 0.87 1.13 1.12 

5703 
Ashfield 

014 106 90.8 0.32 0.09 0.34 1.17 0.97 1.39 1.18 1.05 1.33 0.88 

5704 
Ashfield 

015 40 72.1 0.14 0.18 0.13 0.60 0.47 0.76 0.65 0.56 0.72 0.98 

5705 
Ashfield 

016 91 70.8 0.41 0.20 0.22 1.26 1.04 1.52 1.23 1.11 1.38 0.92 

MSOA 
Code 

MSOA 
Name Codes of Adjacent MSOAs        

5690 
Ashfield 

001 3956,3957,5691,5692,5693,5694,5751,5755         

5691 
Ashfield 

002 5690,5693,5694           

5692 
Ashfield 

003 3957,3959,5690,5694,5695,5698          
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(Table 6). Continued. 

5693 
Ashfield 

004 5690,5691,5694,5696,5755,5758          

5694 
Ashfield 

005 5690,5691,5692,5693,5695,5696,5698         

5695 
Ashfield 

006 5692,5694,5698           

5696 
Ashfield 

007 5693,5694,5697,5698,5732,5758,5764         

5697 
Ashfield 

008 5696,5698           

5698 
Ashfield 

009 3959,5692,5694,5695,5696,5697,5699,5700,5732        

5699 
Ashfield 

010 5698,5700,5701,5704,5719,5732          

5700 
Ashfield 

011 3937,3959,5698,5699,5701          

5701 
Ashfield 

012 3937,3939,5699,5700,5719          

5702 
Ashfield 

013 2791,5703,5704,5705,5732,6693          

5703 
Ashfield 

014 5702,5704,5705           

5704 
Ashfield 

015 5699,5702,5703,5705,5719,5721,5722,5732         

5705 
Ashfield 

016 2791,2793,5702,5703,5704,5722,6764         

 

In sub-regions where many areas have high central 
risk, borrowing strength at the lower quantiles under 
the HQR model may result in more areas classified as 
high risk. Additionally borrowing strength at both low 
and high quantiles will produce narrower 95% risk 
intervals. This pattern (more high risk areas and 
narrower risk intervals under quantile regression) 
occurs especially within cities such as Birmingham, 
Bristol, Nottingham, Sheffield and Leeds. 

Another illustration is provided by the MSOAs in the 
town of Ashfield (see Table 6), intermediate between 
Sheffield and Nottingham. Table 6 shows predictors 
and risk intervals under BYM and HQR models, and 
outlier indicators expressed in the normalized form 
W!i / W! .  Apparent are narrower risk intervals under 
quantile regression. Regarding classification as high 
risk, an example is Ashfield003 with a relative 95% risk 
interval (0.86, 1.32) under the BYM model, but (1.01, 
1.30) from quantile regressions at ! = 0.025  and 
! = 0.975.  It can be seen that this area has neighbours 
within the city with estimated R0.025, i  above 1 
(especially Ashfield005), and that this area has low 
rurality, a factor that also affects quantile regression 
estimates of R0.025, i . 

Narrower risk intervals do not, however, apply to 
areas with high outlier indicators (see Table 7, where 

NA for the first area indicates that Yi  is unavailable, 
and outlier indicators at ! = 0.50  are normalized). High 
outliers are typically associated with discrepancies 
between the area's observed MLE relative risk Yi / Ei , 
and the MLE relative risk in the area's locality Ni . They 
may also be associated with discrepancies between 
observed risk and the area's predictor profile (e.g. 
Newcastle upon Tyne 013). Median quantile regression 
estimators shrink the modelled relative risk closer to 
the neighbourhood risk level than the BYM regression. 
However, risk intervals are wider under median 
quantile regression. 

7. CONCLUSIONS 

In this paper, a model for quantile regression within 
a hierarchical framework is proposed for overdispersed 
area counts of disease, mortality, or hospitalisations. 
This technique has the advantage that a profile of the 
relative outcome risk across quantiles can be obtained, 
including estimates of uncertainty (e.g. the uncertainty 
attaching to 2.5% or 5% relative risk quantiles).  

An assessment of how spatial patterns of relative 
morbidity risk (especially elevated levels) may be 
affected by using quantile regression involves self-
harm data for English MSOAs. It was shown that 
impact of area predictors (deprivation, rurality, 
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fragmentation) varies between quantiles. Hierarchical 
quantile regression generally produced narrower risk 
intervals, except for outlier areas, and led to a higher 
number of areas being classed as high risk, although 
there was concordance in risk classification with the 
results of the BYM model [3].  
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