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Abstract: Melanoma of the skin is the fifth and seventh most commonly diagnosed carcinoma in men and women, 
respectively, in the USA. So far, gene signatures prognostic for overall and distant metastasis-free survival, for example, 
have been promising in the identification of therapeutic targets for primary and metastatic melanoma. But most of these 
gene signatures have been selected using statistics that depend entirely on the parametric distributions of the data (e.g. 
t-statistics). In this study, we assessed the impact of relaxing the parametric assumptions on the power of the models 
used for gene selection. We developed a semi-parametric model for feature selection that does not depend on the 
distributions of the covariates. This copula-based model only assumed that the marginal distributions of the covariates 
are continuous. Simulations indicated that the copula-based model had reasonable power at various levels of the false 
discovery rate (FDR). These results were validated in a publicly-available melanoma dataset. Relaxing parametric 
assumptions on microarray data may yield procedures that have good power for differential gene expression analysis. 

Keywords: Copula, False discovery rate, Melanoma, Microarray, Power.  

1. BACKGROUND 

Melanoma of the skin is among the most common 
cancer types in the United States. It is the fifth and 
seventh most commonly diagnosed carcinoma in men 
and women, respectively [1]. A major challenge with 
melanoma is the identification of therapeutic targets. 
Multi-gene signatures have shown promise in this 
regard and a number of these signatures have been 
developed within the last decade [2-9]. 

The development of such gene signatures require 
the use of statistical methods. A number of studies [7-
9] used parametric methods based on the t-test with 
multiple corrections. One advantage of these methods 
is that they offer a straightforward approach to 
calculating p-values and confidence intervals. 
Moreover, for large samples, the distribution of the t-
statistics is independent of the overall expression level 
of the gene. Unfortunately, for small sample sizes, the 
t-test based methods depend on strong parametric 
assumptions. These assumptions may be violated in 
practice, and so non-parametric methods have also 
been applied in some studies [3-5]. For these methods, 
the distribution of random errors are estimated without 
strong parametric assumptions. The significance 
analysis of microarrays (SAM) method [10], in 
particular, avoids high variance that results from 
estimating the variance of each gene separately. When 
the sample size is small, any method that reduces the 
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variance in the estimates is more accurate. The non-
parametric methods also have disadvantages which 
vary from one method to the other. For example, the 
Wilcoxson-test approach exhibits low power in the 
identification of differentially expressed genes [11]. For 
a detailed review of methods for finding differentially 
expressed genes, see [11-14]. 

Despite all the proposed methods mentioned above, 
there is no unanimous agreement on any particular 
gene selection method. Furthermore, most methods 
were developed for finding differentially expressed 
genes based on groups or classes of the samples 
(discrete covariates). However, there are many 
covariates of interest in microarrays that are continuous 
in nature. 

This study proposed an algorithm for selecting 
genes associated with a continuous but non-clinical 
outcome based on a semi-parametric copula model. A 
copula can be loosely defined as a function that joins 
together the marginal distributions to the joint 
distribution. It is semi-parametric in the sense that no 
assumptions are made on the marginal distributions but 
the dependence parameter is assumed to come from a 
parametric family [15]. An advantage of the copula-
based approach is its compatibility with any distribution 
function. This allows for the relaxation of the 
assumption of specific distributions, which is made in 
most of the existing methods. A possible setback of the 
copula approach for finding differentially expressed 
genes may be the use of an assumed copula. So far no 
method for selecting an optimum copula for analyzing 
gene expression data has been developed, hence the 
use of an assumed copula. 
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Owzar et al. [16] had applied a copula-based 
approach to identify genes that are differentially 
expressed between stage I and III lung cancer patients, 
based on survival copulas and family-wise error rate 
(FWER) control. In contrast, our proposed algorithm is 
based on a continuous outcome from melanoma cell 
lines and controls for the false discovery rate (FDR), 
since the FWER is often too conservative [17]. 

The performance of our copula-based approach in 
terms of power was assessed via simulations. The 
method was then applied to a melanoma cell lines 
dataset to select genes that are correlated with the G2  
checkpoint function. The gene signature generated by 
the copula approach was then subjected to an 
independent primary melanoma dataset to determine if 
it is prognostic of 4-year distant metastasis-free 
survival in melanoma patients. 

2. METHODS 

2.1. Copula Density and Likelihood Function 

A copula is a bivariate distribution with uniform 
marginals. By Sklar’s theorem [18], for any distribution 
function, F , with marginals F1  and F2 , there exists a 
copula, C , such that  

F(x, y) = C[F1(x1 ),F2 (y)]           (1) 

for (x, y !)  in the support of F . This result can be easily 
extended to multivariate distributions, to yield Sklar’s 
theorem in m-dimensions, which we now state (without 
proof): 

Let F  be an m-dimensional distribution function 
with margins F1(x1 ), ...,Fm (xm ) . Then there exists an m-
copula, C , such that for all  x = (x1, x2 , ..., xm !) " ! ,  

F(x1, ..., xm ) = C F1(x1 ), ...,Fm (xm )[ ] .         (2) 

If F1,F2 , ...,Fm  are all continuous, then C  is unique 
and can be expressed as  

C(u1,u2 , ...,um ) = F(F1
!1(u1 ),F2

!1(u2 ), ...,Fm
!1(um )),        (3) 

for any u = (u1,u2 , ...,um !) " [0,1]m .  

Upon differentiation, (2) becomes  

f (x1, x2 , ..., xm ) =
!mC(F1(x1 ), ...,Fm (xm ))
!F1(x1 )...!Fm (xm ) i=1

m

" dFi (xi )
dxi

 

= c(F1(x1 ), ...,Fm (xm ))
i=1

m

! fi (xi ).          (4) 

Here, f , c  and fi  are the densities for F , C  and 
Fi , i =1, 2, ...,m , respectively. Let ui  = Fi (xi ) , 
i =1, 2, ...,m . Then (4) becomes  

L(!) = f (x1, x2 , ..., xm ) = c(u1,u2 , ...,um )
i=1

m

" fi (xi ).        (5) 

One can fit a copula model by estimating its 
parameters using the maximum likelihood approach. In 
practice, it is more convenient to work with the 
logarithm of a likelihood function because it simplifies 
subsequent mathematical analysis. Since the logarithm 
is a monotonically increasing function, maximizing the 
log of a function is the same as maximizing the function 
itself. The log-likelihood is given as  

 
!n (!) =

j=1

n

"logc(F1(x1 ), ...,Fm (xm ))+
j=1

n

"
i=1

m

"log( fi (xi )),        (6) 

and the estimate of !  is  

 !̂ = arg max!n (!).           (7) 

This is equivalent to finding a solution to  

 

1
n
!
!"
!n (").            (8) 

Since the marginals are unknown, each Fi (xi )  may 

be replaced with its marginal estimator F̂i (xi )  to obtain 

!̂i . This approach is referred to as the canonical 
maximum likelihood estimation (CMLE) method [15]. 
Here, F̂i (xi )  is given by  

F̂i (xi ) =
n

n +1
1
n j=1

n

!I Xi " xi( ) ,          (9) 

where I  is the indicator function. Rescaling the 

empirical distribution by n
n +1

 avoids the potential 

unboundedness of log[c(F1(x1 ), ...,Fm (xm )]  as some of 
the Fi (xi ) ’s tend to be one [15]. The corresponding 
pseudo-loglikelihood is given as  

 
!n
* (!) =

j=1

n

"logc(F̂1(x1 ), ..., F̂m (xm ))+
j=1

n

"
i=1

m

"log( fi (xi )),      (10) 

and the estimate of !  is  

!̂ " arg max
j=1

n

# log c(F̂1(x1 ), ..., F̂m (xm )),       (11) 
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since the last summand in (10) does not depend on ! . 
Under suitable regularity conditions, !̂  is consistent 
and is asymptotically normal [15]. In general, 
multivariate models do not have closed form estimators 
and, therefore, numerical methods are required in the 
estimation process [19]. 

2.2. Copula Model for Differential Gene Expression 

We were interested in the pairwise correlation 
between each gene’s expression profile and a 
quantitative outcome. Therefore, the copula of interest 
was the bivariate copula ( m = 2 ). Suppose a 
microarray experiment consists of n  subjects/samples 
and G  genes. Let xi = (x1i , ..., xni )

'  be the gene 
expression profile for gene i  and y = (y1, ..., yn )

'  be a 
vector of the covariate of interest (quantitative trait). We 
wanted to find K  genes that are correlated with y , 
0 < K < G . That is, we were interested in determining 
whether, for each gene i , xi  and y  are independent 
or not. The test for independence, thus, becomes 
testing for the null hypothesis  

H 0i :Y ! Xi (Xi and Y are independent),       (12) 

against the alternative hypothesis  

H1i :Y /! Xi (Xi and Y are independent).       (13) 

For multiple genes, (12) is tested simultaneously 
and so the hypothesis of interest becomes  

 
H 0 :Y ! Xi for all i =

i=1

G

!H 0i        (14) 

vs.  

 
H1 :Y /! Xi for some i =

i=1

G

!H1i .        (15) 

In terms of copulas, assume that for each gene i , 
the joint distribution of Y  and Xi  is generated by a 
parametric copula C(u1,u2;!i )  such that  

Hi (y, x) = C[F(y),Fi (x);!i ],        (16) 

where Hi (y, x) , F(y)  and Fi (x)  are the CDFs of 
(Y , Xi ) , Y  and Xi  respectively. Here u1 = F(y) , 
u2 = Fi (x)  and !i  is the dependence parameter. 
Equation (14) and (15) now becomes  

 
H 0 :

i=1

G

! C(u1,u2;!i ) = u1u2 for all (u1,u2 )
T " [0,1]2#$ %&,      (17) 

vs.  

 
H1 :

i=1

G

! C(u1,u2;!i ) " u1u2 for some (u1,u2 )T # [0,1]2$% &'.   (18) 

A normal copula, for instance, attains independence 
when !i  = 0. In this case, the global hypothesis to test 
for the dependence in terms of !i  is expressed as  

 
H 0 :

i=1

G

!(!i = 0) vs. H1 :
i=1

G

"(!i " 0).        (19) 

2.3. Hypothesis Testing 

To test (19), we needed the distribution of !̂i  under 
the null hypothesis. Rather than assume a parametric 
distribution for the null hypothesis, we used a 
permutation resampling based approach [20]. For a 
given ! , a gene is differentially expressed if its p-value 
is less than < ! . To adjust for multiple comparisons, 
the false discovery rate (FDR) approach [21] was used. 
The global null hypothesis (19) is rejected if at least 
one of its components ( H 0i ) is rejected, based on the 
estimated FDR values. 

2.4. Copula Algorithm for Identifying DEGs 

Our copula-based algorithm for finding differentially 
expressed genes (DEGs) can be summarised as 
follows:  

1. Estimate !i  using the CMLE method. In the 
CMLE approach, no assumption is made on the 
marginal distribution. The marginal distribution 
for each gene, Fi (xi )  and a quantitative 
outcome, F(y) , are replaced with their 

estimators F̂i (xi )  and F̂(y) , respectively, to 

obtain !̂i .  

!̂i " arg max
j=1

n

# logc(F̂i (xi ), F̂(y)).        (20) 

A detailed explanation of the CMLE method is 
provided in the Supplementary Materials (B).  

2. Find gene-specific p-values (unadjusted p-
values) using the permutation based resampling 
method. See Supplementary Materials (C) for 
details.  

3. Apply the FDR approach to control for type I 
error. See Supplementary Materials (D) for 
details.  

4. A gene is differentially expressed if its estimated 
FDR (estimated q-value) is less than some 
specified value ! "  [0,1].  
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An R code for implementing the algorithm is 
available from the authors upon request. 

2.5. Simulations 

Twelve simulation scenarios were considered in 
evaluating the performance of the proposed copula 
method in terms of power. Let n  and G  denote the 
number of samples and genes, respectively. Further, 
let D  denote the number of genes assumed to be truly 
differentially expressed. Then (G ! D)  genes are 
assumed to be non-differentially expressed. The gene 
expression data matrix, X , is a G ! n  matrix of log2-
ratios. We can write X  as X = (X1,X2 ) , where X1  and 
X2  are D ! n  and (G ! D)" n  matrices, respectively. 
We set D ! (50,100, 200) , n ! (20, 35, 50,100)  and G  to 
be 1000. We generated the (1000 ! D)  genes from the 
standard normal distribution. To generate the D  
genes, we used the standard normal distribution in 
conjunction with the Cholesky decomposition [22] of 
their correlation matrix as follows: 

1. Generate an unstructured correlation matrix ! . 
!  is a (D +1)! (D +1)  matrix that has (i, j)th  
element given by !i, j = corr  (xi , x j ) . 

2. Find the Cholesky factor, A , of !  such that 
! = AA' .  

3. Let  z i ! N(0, In ), i =1, 2, ..., (D +1) .  

4. Z = (z1, z2 , ..., zD+1 !) . 

5. XD+1 = AZ . 

XD+1  is the gene expression matrix for D  genes 
assumed to be differentially expressed and a covariate 
y . y  can take any of the D +1  row vectors from the 
matrix XD+1 . X1  is therefore a submatrix of XD+1  with 
dimensions D ! n . 

The developed copula method was applied to the 
12 simulated datasets to evaluate its power in 
identifying DEGs. We transposed X  in the analysis, so 
that !X  had genes on the columns and samples on the 
rows. We followed the procedure in section 2.4 to 
identify DEGs at different estimated FDR values. A 
normal copula was assumed. See Supplementary 
Materials (A) for the description of the normal copula. 
Power was calculated as the ratio of the number of 
correctly identified differentially expressed genes, true 
positives (TP), to the total number of actual DEGs, D. 
Thus,  

Power = TP
D

         (21) 

2.6. Application 

The proposed copula model was applied to a 
publicly available melanoma dataset. This dataset 
contained gene expression data (raw intensities) on 54 
cell-lines (35 melanoma cell lines and 19 normal 
human melanocytes (NHMs), each with 45,015 probes. 
Only the melanoma cell lines were analyzed. The raw 
data was median-normalized and log2-transformed. 
Multiple probes were reduced to one per gene by using 
the most variable probe(set)–measured by interquartile 
range (IQR)–across arrays. Filtration and normalization 
of the gene expression data is implemented using BRB 
Array Tools software [23]. A gene was filtered out if 
less than 20% of its expression data values had at 
least 1.5-fold change in either direction from the genes 
median value. Genes with more than 50% missing data 
across all its samples were also filtered out. There 
were 3,860 genes available for subsequent analysis. 

We used the G2  checkpoint function to quantify the 
biological process in melanoma progression. Omolo et 
al. [8] found the G2  checkpoint function to be 
prognostic for the development of distant metastasis, 
hence its choice for this study. The G2  checkpoint is a 
position of control in the cell cycle that delays or arrests 
mitosis when DNA damage by radiation is detected. It 
prevents cells with damaged DNA from entering 
mitosis, thereby providing the opportunity for repair and 
stopping the proliferation of damaged cells. The G 2  
checkpoint function in melanoma cell-lines were scored 
as a ratio of mitotic cells in 1.5 Gy ironizing radiation 
(IR)-treated cultures in comparison to their sham-
treated control (i.e. IR to sham ratio) [8]. 

A normal copula was assumed for the analysis of 
the melanoma dataset. Such an assumption was 
previously made in [16] for lung cancer. Genes that 
were correlated with the G2  checkpoint function were 
selected based on their estimated FDR values. To 
check the biological significance of the G2  signature 
generated by the copula method, we used the 
independent dataset in [2] to identify genes that could 
predict a patient’s risk (low/high) for developing distant 
metastasis within 4 years of primary diagnosis. The 
supervised principal component method [24] was used 
to separate the samples into high/low risk group. The 
procedure was implemented by BRB-ArrayTools 
software [23]. 

3. RESULTS AND DISCUSSION 

Figure 1 shows the top differentially expressed 
genes for each of the simulated datasets, while Table 1 
provides the number of DEGs obtained at various 
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levels of estimated FDR. From Table 1, it can be seen 
that as the estimated FDR values increases, more 
genes are identified as being differentially expressed. 
For example, for n = 35 , D = 50  and FDR = 0.05 , 49 
genes are identified and at FDR = 0.1  for the same n  
and D , 52 genes are identified. The same pattern is 
seen for the other values of n . This shows that the 

proposed algorithm is stable as the known DEGs 
selected at a lower FDR threshold are all contained in 
the genes selected at a higher FDR threshold. 

Table 2 shows the power of the copula method at 
different estimated FDR levels for four sample sizes: n  
= 20, 35, 50 and 100. The results show that the power 

 
Figure 1: Heatmaps using simulated data. Each simulated dataset contains 1000 genes and n = 35  samples. (a). No 
assumption is made on the number of DEGs, D ; (b). D = 50 ; (c). D =100 ; and (d). D = 200 . The top DEGs are at the bottom 
of the list of 1000 genes. 

 

Table 1: DEGs at FDR Level between 0.001 and 0.2 on Twelve Simulated Datasets each with 1000 Genes. Sample Size 
was Set at n ! {20,35,50,100} . Number of Significant Genes were Set to be 50, 100 and 200. 

Estimated FDR Threshold 
n D 

0.001 0.01 0.025 0.05 0.1 0.2 

50 30 30 30 44 49 59 

100 79 92 95 103 117 132 

20 

200 137 184 197 209 222 251 

50 49 49 52 53 54 62 

100 99 101 101 105 110 121 

35 

200 201 201 204 209 222 258 

50 50 50 51 51 53 61 

100 100 101 102 106 112 124 

50 

200 202 205 210 216 223 249 

50 50 50 50 50 55 58 

100 100 101 101 107 111 136 

100 

200 201 201 208 212 226 259 
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of the copula method is sensitive to low sample sizes. 
For example, the power is 0.58 when n = 20  at D = 50  
but increases to 1 for the same value of D  as n  
increases to 100. For the sample size of at least 35, the 
least value of the power observed from the analysis is 
0.98. This shows that the copula method is quite 
powerful in finding differentially expressed genes. The 
copula approach is also robust to sample size, 
especially as the number of known DEGs increases. 

Even though Owzar et al. [16] and our study both 
assessed the power of the test, a direct comparison of 
the conclusion on the power of the test may not be 
appropriate. Owzar et al. [16] assessed the power by 
using a constant sample size ( n = 50 ) and constant 
number of DEGs ( D = 5 ) but varied the expected 
proportion of censored observations, correlation 
between the gene expression profiles and correlation 
between the prognostic genes and the time-to-event 
variable. They concluded that power was affected by 
the expected proportion of censored observations and 
that an increase in the expected proportion of censored 
observations lead to a decrease in the power of the 
test. Our study assessed the power of the test by 
varying the number of genes that were assumed to be 
differentially expressed, the sample size and the 
estimated FDR thresholds. Our approach is less 
conservative compared to Owzar et al. [16] and hence 
could be more appealing in its own right. 

When applied to the cell lines dataset, the copula 
method identified 9 genes at FDR < 0.01  and 25 genes 
at FDR < 0.2 . Table 3 lists the genes that are 
correlated with G2  checkpoint function at FDR < 0.2 . 
Annotation of the 25 genes was performed using the 
Database for Annotation, Visualization, and Integrity 

Discovery (DAVID) [25]. Seven of them did not have 
DAVID identifiers and were hence “unknown". We 
compared our results and the results presented in [8]. 
They found 165 genes that were correlated with G2  
checkpoint function. The 165 unique genes were 
generated by two methods: a Bayesian approach and 
the quantitative trait analysis (QTA). The overlapping 
genes between our 25 genelist and their 165 genelist 
were ZNF711, DGKE and ARNTL2 (Figure 2). It is 
noteworthy that the QTA method applied in [8] did not 
adjust for multiplicity. Therefore, a direct comparison of 
the two genelists may not be appropriate. 

The copula genelist was also subjected to class 
prediction of the G2  checkpoint function, using the 
least absolute shrinkage and selector operator 
(LASSO) method [26]. Results show that the genelist 
could predict well ( R2 = 0.311 , p = 0.00494). We further 
subjected our genelist to a survival risk prediction 
(SRP) analysis to assess its biological importance. Our 
list generated 4 prognostic genes, which shows a 
significant separation of the samples into low and high 
risk group ( !2  = 5.9, p = 0.0147) (Figure 3). Similar 
results are reported in [8], using their 32 prognostic 
genes ( !2  = 5.6, p = 0.018). Our list of 25 genes 
performed better in SRP than a randomly selected 25 
genes from the 3860 genes ( !2  = 0.1, p = 0.655). 
However, unsupervised hierarchical clustering 
indicated no significant (p = 0.317) separation of the 
samples for distance metastasis-free survival (Figure 
3). 

Only one gene, ZNF711, was found to overlap 
between the two sets of Cox genes. This gene, 

Table 2: Power at FDR Level between 0.001 and 0.2 on Six Simulated Datasets each with 1000 Genes. Sample Size 
was Set at n ! {20,35,50,100} . Number of Significant Genes were Set to be 50, 100 and 200. 

Estimated FDR Threshold 
n D 

0.001 0.01 0.025 0.05 0.1 0.2 

50 0.58 0.58 0.58 0.80 0.88 0.96 

100 0.79 0.92 0.95 0.98 0.99 1.00 

20 

200 0.69 0.92 0.98 1.00 1.00 1.00 

50 0.98 0.98 1.00 1.00 1.00 1.00 

100 0.99 1.00 1.00 1.00 1.00 1.00 

35 

200 1.00 1.00 1.00 1.00 1.00 1.00 

50 1.00 1.00 1.00 1.00 1.00 1.00 

100 1.00 1.00 1.00 1.00 1.00 1.00 

50 

200 1.00 1.00 1.00 1.00 1.00 1.00 

50 1.00 1.00 1.00 1.00 1.00 1.00 

100 1.00 1.00 1.00 1.00 1.00 1.00 

100 

200 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 3: List of Genes that are Correlated with the G2  Checkpoint Function as Selected by the Copula Approach at 
FDR < 0.2 . 

 Agilent ID   Symbol   Gene Name  

A_23_P14612   FGF7   fibroblast growth factor 7 (FGF7)  

A_23_P153964   INHBB   inhibin beta B subunit (INHBB)  

A_23_P203115   TMEM25   transmembrane protein 25 (TMEM25)  

A_23_P211631   FBLN1   fibulin 1 (FBLN1)  

A_23_P214080   EGR1   early growth response 1 (EGR1)  

A_23_P217297   ZNF711   zinc finger protein 711 (ZNF711)  

A_23_P364504   ERFE   Erythroferrone (ERFE)  

A_23_P369328   C10orf35   chromosome 10 open reading frame 35 (C10orf35)  

A_23_P389250   Smco2   single-pass membrane protein with coiled-coil domains 2 (SMCO2)  

A_23_P393034   HAS3   hyaluronan synthase 3 (HAS3)  

A_23_P69537   NMU   neuromedin U (NMU)  

A_24_P130952   MLK4   mixed lineage kinase 4 (MLK4)  

A_24_P196665   GNGT1   G protein subunit gamma transducin 1 (GNGT1)  

A_24_P20814   KHDC1L   KH domain containing 1 like (KHDC1L)  

A_32_P209230   CITED4   Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4)  

A_32_P232559   PRKCQ-AS1   PRKCQ antisense RNA 1 (PRKCQ-AS1)  

A_32_P399546   ARNTL2   aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2)  

A_32_P540991   DGKE   diacylglycerol kinase epsilon (DGKE)  

A_23_P153958   Unknown   Unknown  

A_32_P134427   Unknown   Unknown  

A_32_P154726   Unknown   Unknown  

A_32_P190343   Unknown   Unknown  

A_32_P227158   Unknown   Unknown  

A_32_P874394   Unknown   Unknown  

A_32_P30874   Unknown   Unknown  

 

 
Figure 2: Venn diagrams of genes from different genelists. (a). Intersection of the copula genelist and the 165 genes in 
Omolo et al. (2013). (b). Intersection of Cox genes, 4 from the copula genelist and 34 from the 165 genes in Omolo et al. (2013). 

however, has not been previously reported in relation 
to melanoma development. It lies in a region of the X-
chromosome which has been associated with mental 
retardation [27]. 

4. CONCLUSION 

In this study, we have proposed a copula-based 
algorithm for finding differentially expressed genes 
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when the outcome of interest is continuous. The 
bivariate normal copula was employed in the analysis. 
We have shown the potential of the proposed copula-
based approach in finding genes that are correlated 
with quantitative outcome in melanoma studies. The 
main focus was on the assessment of the power of the 
copula method in selecting genes that are correlated 
with quantitative outcome while controlling for FDR. 
Simulations indicated that the copula-based model had 
reasonable power at various levels of the FDR. Our 
approach is flexible as no parametric assumption is 
made on the marginal distributions, except that they 
are continuous. Relaxing parametric assumptions on 
microarray data may yield procedures that have good 
power for selecting differentially expressed genes. 
Although the copula model was applied to microarray 
data generated from the Agilent platform (dual-
channel), it can be adopted for data from single-
channel platforms (e.g. Affymetrix) as well. 

A possible limitation of our study was the 
assumption of the normal copula for the analysis. This 
implied that the dependence structure between the G2 
checkpoint function and the expression level for each 
gene in the analysis were all identical, which could 
result in loss of power if the assumption is not true. An 
alternative approach would be to model the pairs using 
different copulas. Thus, a test for choosing an optimal 
copula would have to be performed for each pair. 

Goodness-of-fit test methods maybe useful in this 
regard [28, 29]. 

New technologies such as RNA-sequencing (RNA-
seq) are quickly replacing microarray technology. 
Current methods being developed for differential gene 
expression analysis are focusing on RNA-seq data. 
However, RNA-seq is more costly than microarrays [2]. 
Microarrays can still provide reliable and sensitive 
results and are quick and easy to work with. Therefore, 
new methods for analysing data from microarrays are 
still needed. 
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