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SUPPLEMENTARY MATERIALS 

(A): A Bivariate Normal Copula 

A bivariate normal copula is expressed as  
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is the bivariate standard normal distribution function with the correlation parameter ! " [#1,1]  and  
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denotes the univariate standard normal distribution function. We find the probability density function of copula, 
c(u1,u2 )  by differentiating the C(u1,u2 )  with respect to u1  and u2 . i.e.  
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Equation (5) therefore becomes  
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The copula density function thus becomes 
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and the likelihood function in terms of the normal copula is  

f (x1, x2 ) = c(u1,u2 )
i=1

2

! fi (xi ) .      (9) 

f (x1, x2 )  reduces to a bivariate normal if fi (xi )  is normal. 



ii     International Journal of Statistics in Medical Research, 2017, Vol. 6, No. 3 Chaba et al. 

The log-likelihood function becomes  
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The dependence parameter !  is then estimated as  

 !̂ = arg max!"#!n (! ) .      (11) 

The Kendall’s !  and Spearman’s !  for the normal copula are given as  
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respectively. For proofs of (12) and (13), see [1]. 

(B): Canonical Maximum Likelihood Estimation (CMLE) Method 

In this approach, no parametric assumptions are made on the marginals and therefore, it relies on the concept of 
empirical marginal transformation. The transformation approximates the unknown parametric marginal Fi (xi )  with 

empirical distribution function F̂i (xi )  known as a pseudo-sample ( ui ) . F̂i (xi )  is given by 
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where I  is the indicator function. Rescaling the empirical distribution by n
n+1

 avoids the the boundary values. The 

log-likelihood function becomes 
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The dependence parameter !i  is then estimated as  
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since the last summand does not depend on ! . Genest et al. [2] showed that the resulting pseudo-likelihood 
estimator is consistent and asymptotically normal under the condition that Fi  is continuous. 

(C): Permutation-Based Resampling Method 

Permutation approach provides an efficient method to testing when data do not conform to the distribution 
assumptions. To compute unadjusted p-value for each gene, we follow the procedure below.  

1. Permutate the quantitative outcome column B  times as you hold the gene expressions matrix fixed.  

2. For the bth  permutation, b =1,...,B , compute test statistics !̂1b ,...,!̂Gb  for each hypothesis using equation (16).  
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3. After the B permutations are done, for two-sided alternative hypotheses, the permutation p-value for 
hypothesis Hi  is  

pi =
#{b :| !̂ib |"| !̂i |}

B
,      (17) 

where !̂i  is the original !̂  for the ith  gene before the permutation.  

(D): Estimation of the False Discovery Rate (FDR) 

The procedure below outlines the steps followed in the estimation of FDR for a given p -value [3].  

1. Let p(1) ! p(2) ! ...! p(G )  be the ordered p -values. This also denotes the ordering of the features in terms of 
their evidence against the null hypothesis.  

2. For a range of ! , say !  = 0, 0.01, 0.02, ... , 0.95, calculate  
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.  

3. Let f̂  be the natural cubic spline with 3 df of !̂ 0 (")  on ! .  

4. Set the estimate of ! 0  to be !̂ 0 = f̂ (1)  .  

5. Calculate q̂(p(G ) ) = !̂ 0p(G ) .  

6. For i =G !1,G ! 2,...,1 , calculate  
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7. The estimated q-value for the ith  most significant feature is q̂(p(i ) ) .  
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