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Abstract: Unlike the classical two-stage DerSimonian and Laird meta-analysis method, the one-stage random-effects 
Poisson and Negative-binomial models have the great advantage of including the information contained in studies 
reporting zero event in one or both arms and in studies with one missing arm. Since the Negative-binomial distribution 
relaxes the assumption of equi-dispersion made by the Poisson, it should perform better when data exhibit 
over-dispersion. However, the superiority of the Negative-binomial model with rare events and single-arm studies is 
unclear and needs to be investigated. Moreover, to the best of our knowledge, this model has never been investigated in 
the context of a meta-analysis of incidence rate data with heterogeneous intervention effect. Therefore, we assessed the 
performance of the univariate and bivariate random-effects Poison and Negative-binomial models using simulations 
calibrated on a real dataset from a study on the surgical management of phyllodes tumors. Results suggested that the 
bivariate random-effects Negative-binomial model should be favored for the meta-analysis of incidence rate data 
exhibiting over-dispersion, even in the presence of zero-event and single-arm studies. 
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1. INTRODUCTION 

Meta-analysis is considered as the gold standard of 
evidence-based medicine [1]. By combining the results 
of related but independent studies, it allows to evaluate 
the effect of a treatment (or an intervention; here-after 
we will use this latter terminology to emphasize the fact 
that we are in an observational framework) in situations 
where primary studies taken separately would not have 
sufficient power to detect a statistically significant effect 

[2]. Meta-analyses are thus particularly useful when 
studying rare events. For example, Nissen and Wolski 
studied the impact of a diabetes drug on the incidence 
of myocardial infarctions and cardiovascular deaths [3], 
whereas Niël-Weise, Stijnen, and van den Broek 
conducted a meta-analysis on the effect of 
anti-infective-treated central venous catheters on the 
incidence of catheter-related bloodstream infections [4]. 

When the data at hand are counts of events over 
time, the effect size (ES) of interest is often the 
incidence rate (IR) and different intervention arms can 
be contrasted using the incidence rate ratio or the 
incidence rate difference. In this setting, the most 
commonly-used approach, which can be applied in 
both fixed-effect (FE) and random-effects (RE) 
frameworks, consists in computing a weighted average 
of the primary study ESs with weights proportional to 
the inverse of each ES’s variance [5] (the so-called 
“two-stage” approach [6]). Although this approach is 
very popular and enjoys good asymptotic properties, its 
use is problematic in small/finite samples, especially 
with rare events, when some studies report no event in  
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one or both arms, and when some studies’ arms are 
missing. Indeed, the ES and/or the weight computed in 
a single-zero (SZ), double-zero (DZ), or single-arm 
(SA) study are indefinite. To deal with SZ and DZ 
studies, researchers sometimes use a continuity 
correction factor [7]. However, this method is flawed 
and suffers from several criticisms [8-10]. In addition, 
SA studies are still excluded from the meta-analysis. 

Under the assumption of a homogeneous 
intervention effect, Mantel-Haenszel (MH) is an 
alternative to the classical inverse variance method 
and has been shown to be very performant, even with 
very rare events [11]. Unlike the inverse variance 
method, the MH method can cope with SZ studies. 
However, DZ studies are simply discarded with that 
method and, therefore, do not contribute to the ES 
estimate. Similarly, the MH method fails to include the 
information contained in SA studies. Piaget-Rossel and 
Taffé have shown that only the exclusion of SA studies 
impacted the performance of this method (i.e. a loss of 
precision was observed in settings with a large 
proportion of SA studies) [12]. Another limitation of the 
MH method is that it is only valid under the assumption 
of a homogeneous intervention effect [13].  

To improve these simple methods, one-stage or 
exact methods based on the likelihood principle have 
been developed. Such methods use the information 
contained in all the studies (i.e. including SZ, DZ, and 
SA studies) and allow for the inclusion of covariates. A 
natural way to model IR data is to use a Poisson 
likelihood [14]. This model can be adapted to the 
setting of a heterogeneous intervention effect by 
introducing random effects [15-16] and can be used to 
model the IR using either a univariate or a bivariate 
modelling approach [17]. One important limitation of the 
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Poisson model is its reliance on the equi-dispersion 
assumption (i.e. the mean of the distribution is equal to 
its variance), which rarely holds with count data 
(because of unmeasured individual characteristics 
differing within studies for instance). A way to relax the 
equi-dispersion assumption is to replace the Poisson 
distribution by the Negative-binomial [18]. Although we 
found some applications of the Negative-binomial 
model for the meta-analysis of individual patient data in 
a two-stage approach or in the context of a 
homogeneous intervention effect [19-20], we are not 
aware of the use of the random-effects 
Negative-binomial (Re-NB) model for the 
meta-analysis of incidence rate data within a 
framework of a heterogeneous intervention effect, 
especially with rare events and SA studies.  

Therefore, the goal of this paper was to assess the 
appropriateness of the Re-NB model for the 
meta-analysis of IR data in the presence of SZ, DZ, 
and even SA studies. Using simulations calibrated on a 
real clinical dataset, we compared this model with the 
random-effects Poisson (Re-Poi) model. We 
considered both univariate and bivariate versions of 
these two models. The data we used came from a 

recent systematic review on the impact of the width of 
the resection’s margin on the rate of local recurrences 
in phyllodes tumors [21]. The use of a model allowing 
for over-dispersion seemed particularly adapted to this 
example where the exposure (i.e. the width of the 
resection’s margin) had not been randomized and 
accounting for patient-level covariates affecting the 
incidence rate of recurrences at the analysis stage was 
difficult. We restricted our analyses to the framework of 
a heterogeneous intervention effect because the 
assumption of a homogeneous intervention effect was 
not plausible for the example considered. 

In the remaining of this paper, we start by 
describing the illustrative example. Then, Section 3 
presents the different models under investigation. In 
Section 4, we illustrate these models using data from 
the illustrative example and present results from a 
simulation study. Finally, Section 5 contains the 
discussion and some concluding remarks.  

2. ILLUSTRATIVE EXAMPLE 

The dataset used in this paper came from a 
systematic review on the surgical management of 
phyllodes tumors [21]. The author conducted a 

Table 1: Data Extract from the Study on Surgical Management of Phyllodes Tumors 

Study Tumor’s type 
Control arm 

(i.e. margin < 10mm) 
Intervention arm 

(i.e. margin ≥ 10mm) 

n t Y n t Y 

1 Benign 14 1020.6 3 8 583.2 0 

1 Borderline 4 291.6 2 11 801.9 4 

1 Malignant 4 291.6 3 5 364.5 2 

2 Benign - - - 7 522.2 0 

2 Malignant - - - 3 98.1 0 

3 Benign 104 10712 4 30 3090 1 

3 Borderline 34 2856 2 23 1932 0 

4 Benign 56 3976 7 44 3124 6 

4 Borderline 1 71 0 3 213 0 

4 Malignant 1 71 0 3 213 0 

5 Malignant 10 1399 6 14 1958.6 4 

6 Benign 126 9450 5 14 1050 0 

6 Borderline 19 1121 4 13 767 1 

6 Malignant 1 15 0 9 135 5 

7 Benign 16 665.6 4 18 748.8 0 

7 Borderline 1 57 0 2 114 0 

7 Malignant 1 45 1 2 90 0 

8 Malignant 6 726 0 30 3630 0 

9 Benign 53 3074 0 5 290 0 

9 Borderline 5 290 1 2 116 0 

10 Benign - - - 179 6748.3 12 

10 Borderline - - - 43 1406.1 3 

10 Malignant - - - 32 979.2 1 

Note: n = sample size; t = person-months (number of patients × mean follow-up); Y = number of recurrences. 
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systematic review to assess the impact of the width of 
the resection’s margin on the rate of tumor’s 
recurrences (Table 1).  

The dataset entails 10 primary studies on tumors 
patients who underwent a surgical intervention to 
remove their tumor. Each tumor was classified as 
either benign, borderline, or malignant. Two arms were 
defined according to the margin of resection used 
during the surgery: intervention arm included patients 
with a margin above or equal to 10mm, and patients 
whose resection’s margin was below 10mm belonged 
to the control arm. Study 2 and 10 corresponded to SA 
studies as they reported results only for margins above 
ten millimeters. One third of the control arms and more 
than half of the intervention arms reported zero event. 
Sample sizes and person-months varied widely across 
the studies.  

3. MODELS TO COMBINE INCIDENCE RATES 

3.1. The Random-Effects Poisson Model 

3.1.1. Univariate Modelling 

Let !!"# be the number of events occurring in study 
i (! = 1,… ,10), type of tumors j (j ∈ {benign, borderline, 
malignant}) and arm k (k = C for control and I for 
intervention). Assume that the number of events is 
conditionally distributed as a Poisson variable with 
mean !!"# = !!"# ∗ !!"# , where !!"#  denotes the 
incidence rate and !!"# the person-time. Consider the 
following univariate Re-Poi model: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗ !!"# + !! ∗ !!"# ∗ !!"# 

!!!
!!!

~! β,Ω , β = !!
!!

,Ω =
!!!
! 0
0 !!!

!  

where !!"# is an indicator variable taking the value 0.5 
if k = I and -0.5 if k = C, !!"# is a vector of covariate 
affecting the baseline incidence rate, !!"# is a vector of 
covariates affecting the intervention effect. For the 
sake of clarity, we have separated the covariates 
affecting the baseline incidence rate from those 
affecting the intervention effect. Notice, however, that 
!!"# and !!"# may contain the same covariates. In this 
model, one makes the assumption that the residual 
variance of the log(IR) is the same in the control and 
intervention groups [22]. Observe that !!! −

!
!
!!! 

represents the residual log(IR) in the control group and 
!!! +

!
!
!!! the residual log(IR) in the intervention group 

in study i. Therefore, !!!  is the residual log(IRR) in 
study i and !! the mean residual log(IRR) across the 
10 studies. The vector of parameters ! measures the 
change in baseline log(IR) associated with a one-unit 

change of !!"#, whereas ! allows one to account for a 
differential effect of the intervention according to the 
covariates contained in !!"#. Finally, !!!

!  captures the 
residual baseline log(IR) heterogeneity, whereas !!!

!  
measures the residual heterogeneity of the intervention 
effect.  

The likelihood function writes: 

! !!"#|!!"# ,!!! ,!!!
!∈ ! ,!

  

!∈!

! !!! ,!!!|  β,Ω !!!!!!!!

!!

!!

!!

!!

!"

!!!

 

where D = {benign, borderline, malignant}, 
! !!"#|!!"# ,!!! ,!!!  is the Poisson density with mean 
!!"# = !!"# ∗ !!"# , and ! !!! ,!!!|  !,Ω  is the bivariate 
normal density with mean ! and variance-covariance 
matrix Ω. 

3.1.2. Bivariate Modelling 

In the bivariate approach, the log incidence rates of 
events are modelled separately for the intervention and 
control arms and the variances of the residuals log(IR) 
for the control and intervention groups are allowed to 
be different. Therefore, the bivariate Re-Poi model is 
given by: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"
!!" ~! !,Ω ,! =

!!
!! ,Ω =

!!! !!"
!!" !!!

 

where !!"#  and !!"#  are defined as in the univariate 
Re-Poi model. Note that !!"  represents the residual 
log(IR) in the control group of study i and !!"  the 
residual log(IR) in the intervention group of study i. 
Therefore, !!" − !!" is the residual log(IRR) in study i 
and !! − !!  the mean residual log(IRR) across the 
studies. Again, !!"# contains the covariates affecting 
the baseline incidence, whereas !!"#  contains those 
affecting the intervention effect. This bivariate model is 
more flexible than the univariate since it allows 
estimating two distinct variance parameters (!!!,!!!). 
Moreover, the covariance (!!") links the two processes.  

The likelihood is given by 

! !!"#|!!"# ,!!" ,!!"
!∈ ! ,!

  

!∈!

! !!" ,!!"|  !,Ω !!!"!!!"

!!

!!

!!

!!

!"

!!!

 

where ! !!"#|!!"# ,!!" ,!!"  is the Poisson density, 
! !!" ,!!"|  !,Ω  denotes the bivariate normal 
density  with  mean ! and variance-covariance matrix Ω. 
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3.2. The Random-Effects Negative-Binomial Model 

3.2.1. Univariate Modelling 

To obtain a Negative-binomial model [18], one can 
introduce over-dispersion into the Re-Poi model by 
including a random multiplicative coefficient !! in the 
expression of the mean/variance parameter: !!"# =
!!"# ∗ !!"# ∗ !! , where !!~Gamma

!
!
, !  (i.e. a one 

parameter Gamma distribution with unit mean and 
variance !, ! > 0). With !!"#|!!"#~!"#$$"%(!!"#), it can 
be shown that the marginal expectation ! !!"# = !!"# 
and marginal variance !"# !!"# = !!"# 1 + !!!"# , 
thereby allowing the variance to differ from the mean. 
Consequently, the univariate Re-NB model is given by: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !! 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗ !!"# + !! ∗ !!"# ∗ !!"# 

!!!
!!!

~! β,Ω , β = !!
!!

,Ω =
!!!
! 0
0 !!!

! , !!~Γ
1
!
, !  

and the likelihood writes: 

 

where ! !!"#|!!"# ,!!! ,!!! , !!  is the Poisson density, 
Γ !!|1/!, !  is the Gamma density with mean 1 and 
variance ! , ! !!! ,!!!|  β,Ω  is the bivariate Normal 
density with mean β and variance-covariance matrix 
Ω. 

3.2.2. Bivariate Modelling 

The bivariate Re-NB model is similar in structure to 
the bivariate Re-Poi model, except for the addition of 
the over-dispersion terms !!" and !!":  

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !!" 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !!" 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"
!!" ~! !,Ω ,! =

!!
!! ,Ω =

!!! !!"
!!" !!!

 

!!"~Γ
1
!!
, !! , !!"~Γ

1
!!
, !!  

The likelihood is given by: 

 

where ! !!"#|!!"# ,!!" ,!!" , !!"  is the Poisson density, 
Γ !!"|1/!! , !!  is the Gamma density with mean 1 
and variance !!  ( ! = !,! ), ! !!" ,!!"|  !,Ω  is the 
bivariate Normal density with mean !  and 
variance-covariance matrix  Ω. Close inspection of the 
likelihood function reveals that the bivariate Re-NB 
model allows not only two distinct variances to be 
estimated (i.e. one for each arm), but also two distinct 
over-dispersion parameters (!! , !!), which makes this 
model more flexible than the more commonly-used 
bivariate Re-Poi model. 

4. NUMERICAL ANALYSES 

All the numerical analyses were conducted using 
Stata/IC 15.1 [23]. We used the command mepoisson 
to fit both Re-Poi models, menbreg to fit the univariate 
Re-NB model, and gsem to fit the bivariate Re-NB 
model. To integrate the likelihood, we used the 
mean-variance adaptive Gauss-Hermite quadrature 
method with seven integration points (the default 
implementation in Stata). We set the maximum number 
of iterations at 1001. 

4.1. Specifications of the Log Incidence Rate 

For the univariate Re-Poi and the univariate Re-NB 
models, we considered the following log(IR) 
specification: 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗!!"# + !! ∗ !!"# ∗!!"# 

where !!"# is an indicator for malignant tumors taking 
the value 1 for malignant and 0 otherwise and !!"# is 
defined as in Section 3. The focus was on estimating 
the mean intervention effect for non-malignant tumors 
(!(!!!) ≡ log!"" ), the residual heterogeneity of the 
intervention effect (   !"#(!!!) ≡ !!"#!""! ), and the 
difference in the mean intervention effects between 
malignant and non-malignant tumors (!! ≡ Δ!"#!""). 

For the bivariate models, we considered the 
following specifications for the log(IR): 

log(!!"#) = !!" + !! ∗!!"# 

log(!!"#) = !!" + !! ∗!!"# 

Again, parameters of interest were the mean 
intervention effect for non-malignant tumors (!(!!" −
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!!") ≡ log!"" ), the residual heterogeneity of the 
intervention effect (!"#(!!" − !!") ≡ !!"#!""! ) and the 
difference in the mean intervention effect between 
malignant and non-malignant tumors ( γ! − !! ≡
Δ!"#!""). 

4.2. Application to the Surgical Management of 
Phyllodes Tumors 

Table 2 reports the results obtained by fitting the 
four models described in Section 3 to the data 
presented in Table 1. Changing from the univariate to 
the bivariate framework had a smaller effect on the 
estimates obtained by the Re-Poi model than on those 
obtained by the Re-NB model. 

For each model, the estimated effect of a margin of 
resection above 10mm was a reduction of the rate of 
local recurrence for non-malignant tumors (i.e. all 
estimates of log!"" were below zero). This reduction 
was larger for the Re-NB models, with the largest 
reduction estimated by the univariate model. 
Estimations of the residual heterogeneity of the 
intervention effect by both Re-Poi models were around 
0.4, whereas the Re-NB models provided values close 
to zero for this parameter (the univariate Re-NB model 
even found an absence of residual heterogeneity).  

With the two Re-Poi models, estimates of the 
impact of the margin was greater for malignant tumors 
(i.e. Δ!"#!"" < 0), whereas with the Re-NB models the 
opposite result was obtained. While with the univariate 
Re-NB model it was still found that the margin above 

10mm reduced the rate of local recurrences of 
malignant tumors, this was not the case anymore with 
the bivariate model (i.e. the estimated coefficients of 
log!"" and Δ!"#!"" cancelled each other out). 

4.3. Simulations 

To identify the best fitting model from Section 3, we 
conducted Monte-Carlo simulations that were 
calibrated in order to mimic the data from the studies 
selected in the systematic review on phyllodes tumors 
(Table 1). The number of events were generated 
according to the bivariate Re-NB model described in 
Subsection 3.2.2. We set the parameters of this model 
in order to investigate four different scenarios (see 
Table 3 below). The first scenario used values closed 
to the estimates obtained when fitting the model on the 
example dataset. This was our baseline scenario, from 
which we derived the three others. Scenario 2 
corresponded to a Poisson framework with no 
over-dispersion, scenario 3 was devised to study the 
impact of having a large amount of residual 
heterogeneity of the intervention effect, whereas the 
last scenario investigated the situation with no mean 
intervention effect. 

For each scenario, we simulated ! = 1000 
datasets. Performance of each model was assessed by 
the median relative bias (i.e. relative difference 
between the median estimate and the true parameter’s 
value), and coverage rate and median width of the 95% 
Wald confidence intervals (CIs) obtained for the three 

Table 2: Estimation of the Three Parameters of Interest in the Illustrative Example Dataset 

Model !"#!"" !!"#!""!  !!"#!"" 

Univariate Re-Poi -0.27 
(-1.15; 0.61) 

0.40 
(0.02 ; 7.35) 

-0.33 
(-1.58 ; 0.91) 

Bivariate Re-Poi -0.33 
(-1.36 ; 0.70) 

0.45 
(0.02 ; 8.25) 

-0.32 
(-1.57 ; 0.92) 

Univariate Re-NB -0.58 
(-1.66 ; 0.50) 

0 
(.) 

0.24 
(-1.70 ; 2.18) 

Bivariate Re-NB -0.48 
(-1.61 ; 0.64) 

0.02 
(0.01 ; 0.03) 

0.48 
(-1.52 ; 2.48) 

Note: 95% Wald confidence intervals are provided between parentheses. log!"" = mean intervention effect for the non-malignant tumors (i.e. impact of margin ≥ 
10mm vs margin < 10mm); !!"#!""!  = residual heterogeneity of the intervention effect; Δ!"#!"" = difference in the mean intervention effect between malignant and 
non-malignant tumors. 
 

Table 3: Value of the Different Parameters under the Four Simulated Scenarios 

Scenarios !! !! !! !! !! !! !!! !!! !!" 

1) Baseline 0.45 1.65 -6.5 -7 0.9 1.4 0.40 0.25 0.30 

2) No over-dispersion 0 0 -6.5 -7 0.9 1.4 0.40 0.25 0.30 

3) Large residual heterogeneity 0.45 1.65 -6.5 -7 0.9 1.4 1.60 1.00 0.30 

4) No mean intervention effect 0.45 1.65 -6.5 -6.5 0.9 0.9 0.40 0.25 0.30 

Note: !!, !!, !!, !!! and !!", for k = C, I, correspond to the parameters of the bivariate Re-NB model described in Subsection 3.2.2. Values in bold represent 
changes compared to the baseline scenario. 
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parameters of interest (i.e. the mean intervention effect 
for non-malignant tumors log!"" , the residual 
heterogeneity of the intervention effect !!"#!""! , and the 
difference in mean intervention effect between 
malignant vs non-malignant tumors Δ!"#!"" ). We 
decided to compute the median instead of the mean for 
the bias and CI’s width to avoid the influence of 
exceedingly large or small values obtained in some 
simulations. Since the numerical algorithm used to 
estimate the different models sometimes failed to 
converge, we also reported the proportion of 
converged runs achieved by each model. 

4.3.1. Scenario 1: Baseline 

The baseline scenario corresponded to the situation 
with moderate mean intervention effect for 
non-malignant tumors ( log!"" = −0.5 ), moderate 
difference in mean intervention effect between 
malignant and non-malignant tumors (Δ!"#!"" = 0.5 ) 
and small residual heterogeneity of the intervention 
effect (!!"#!""! = 0.05). Results for this scenario are 
displayed in Table 4. Overall, the univariate and 
bivariate versions of the Re-Poi model provided more 
similar results than the two versions of the Re-NB 
models. Moreover, these latter ran into more 
convergence issues.  

The bivariate Re-NB models provided the best 
estimates for the mean intervention effect for 
non-malignant tumors; biases were lower and 
coverage rates closer to nominal (i.e. 95%). Regarding 
the estimation of the mean intervention effect between 
malignant and non-malignant tumors, all the models 
obtained small relative bias but only the bivariate 
Re-NB model’s CIs provided acceptable coverage 
rates (91.14%). The model that performed the best for 

the estimation of the intervention’s residual 
heterogeneity parameter was again the bivariate 
Re-NB model (although the relative bias was almost 
300%). Coverage rates for this parameter were much 
too low whatever the model considered.  

4.3.2. Scenario 2: No Over-dispersion 

In the scenario without over-dispersion, all the 
models tended to encounter more numerical issues 
than under the scenario 1, especially the bivariate 
Re-NB model whose proportion of converged runs was 
below 10% (Table 5). Again the bivariate Re-NB model 
provided the best estimate for the mean intervention 
effect for non-malignant tumors (relative bias < 5%). 
However, the CIs provided by this model for this 
parameter were too conservative. For the residual 
heterogeneity parameter, the bivariate Re-Poi model 
was the only one to obtain unbiased estimates but its 
CIs displayed the lowest coverage rates (15%). 
Compared to scenario 1, coverage rates obtained for 
parameter Δ!"#!""  was now satisfactory for all 
models. 

4.3.3. Scenario 3: Large Residual Heterogeneity 

With large residual heterogeneity (!!"#!""! = 2; Table 
6), biases in the mean intervention effect for 
non-malignant tumors and difference in mean 
intervention effect estimates were more or less similar 
to those obtained in the baseline scenario (i.e. 
Scenario 1; Table 4). However, coverage rates tended 
to be lower and confidence intervals wider. Regarding 
the estimate of the residual heterogeneity parameter, 
both Re-NB models underestimated this parameter 
(median relative bias = -63.77% for the univariate 
model and -30.90% for the bivariate one), whereas the 

Table 4: Models Performances under Scenario 1 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.68 -35.15 87.14 2.21 77.0 

Bi Re-Poi -0.78 -55.24 84.21 2.24 85.4 

Uni Re-NB -0.64 -27.90 91.91 2.20 59.2 

Bi Re-NB -0.57 -13.77 94.76 2.49 55.3 

!!"#!""! = 0.05  

Uni Re-Poi  1.02 1936.65 23.12 6.07 77.0 

Bi Re-Poi 1.02 1933.33 9.94 5.03 85.4 

Uni Re-NB 0.41 722.40 47.05 3.43 59.2 

Bi Re-NB 0.20 295.24 4.34 0.12* 55.3 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.46 -8.63 68.05 2.28 77.0 

Bi Re-Poi 0.49 -2.81 66.67 2.22 85.4 

Uni Re-NB 0.48 -3.46 89.54 3.22 59.2 

Bi Re-NB 0.48 -4.98 91.14 3.43 55.3 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 
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Re-Poi models overestimated it (median relative bias 
around 30%). All CIs obtained for this parameter were 
wider than those obtained in the baseline scenario, 
which improved all models’ coverage rates, especially 
for the univariate Re-Poi and Re-NB models, which 
obtained values close to nominal. 

4.3.4. Scenario 4: No Mean Intervention Effect 

The last scenario investigated was that of an 
intervention with a null average effect for both 
malignant and non-malignant tumors (i.e. log!"" = 0 
and Δ!"#!"" = 0). Results obtained under this scenario 
are provided in Table 7. They were virtually identical to 
those obtained under the scenario of efficient 
intervention for non-malignant tumors and non-efficient 

for malignant tumors (i.e. the baseline scenario; Table 
4). The bivariate Re-NB model again provided the most 
reliable results for estimating the mean intervention 
effect for non-malignant tumors and the difference in 
mean intervention effect between malignant and 
non-malignant tumors. However, it also encountered 
more numerical issues. As for the residual 
heterogeneity parameters, all models provided poor 
estimates. 

5. DISCUSSION 

In meta-analysis of IR data, the classical 
inverse-variance weighting method fails to provide valid 
estimates when the event rate is low. One possible 
solution is to use the MH method, but it is only valid 

Table 5: Models Performances under Scenario 2 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.54 -7.36 97.10 1.53 20.7 

Bi Re-Poi -0.54 -7.12 95.40 1.36 54.4 

Uni Re-NB -0.56 -12.06 94.68 1.29 79.0 

Bi Re-NB -0.48 4.94 100 1.61 8.8 

!!"#!""! = 0.05  

Uni Re-Poi  0.17 239.88 85.99 3.84 20.7 

Bi Re-Poi 0.05 6.04 15.07 0.04* 54.4 

Uni Re-NB 0.24 372.99 46.71 1.05 79.0 

Bi Re-NB 0.17 245.45 37.50 0.63 8.8 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.50 0.44 96.62 1.86 20.7 

Bi Re-Poi 0.50 -0.02 95.59 1.72 54.4 

Uni Re-NB 0.51 1.14 95.32 1.71 79.0 

Bi Re-NB 0.41 -18.26 97.73 1.98 8.8 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 

Table 6: Models Performances under Scenario 3 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.86 -71.15 84.03 2.83 91.4 

Bi Re-Poi -0.85 -69.42 83.97 2.99 94.8 

Uni Re-NB -0.82 -64.96 84.74 2.84 67.5 

Bi Re-NB -0.53 -6.98 89.03 2.98 69.3 

!!"#!""! = 2  

Uni Re-Poi  2.57 28.49 93.44 9.68 91.4 

Bi Re-Poi 2.62 31.00 80.06 9.94 94.8 

Uni Re-NB 0.72 -63.77 96.30 4.49 67.5 

Bi Re-NB 1.38 -30.90 30.30 0.59* 69.3 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.48 -3.24 66.19 2.25 91.4 

Bi Re-Poi 0.51 1.85 64.45 2.24 94.8 

Uni Re-NB 0.51 1.69 89.19 3.69 67.5 

Bi Re-NB 0.57 14.09 90.19 3.71 69.3 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 
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under the assumption of a homogeneous intervention 
effect and it fails to include the information contained in 
DZ and SA studies. In this paper, we investigated the 
use of the univariate and bivariate Re-NB models to 
conduct a meta-analysis of heterogeneous incidence 
rates, in the presence of rare events and SA studies. 
Through simulations calibrated to mimic a real clinical 
dataset, we compared the performance of these two 
models to that of the univariate and bivariate Re-Poi 
models, which are based on the restrictive assumption 
of equi-dispersion.  

The use of the Re-Poi model for the meta-analysis 
of IR data is not new and has already been discussed 
in the literature. For example, Spittal, Pirkis, and Gurrin 
showed that the univariate Re-Poi model generally 
outperformed the DerSimonian and Laird method, 
notably when the number of SZ or DZ studies was high 

[16]. Stijnen, Hamza, and Özdemir investigated the 
bivariate Poisson modelling [17]. However, we did not 
find any published study investigating the use of either 
the univariate or bivariate Re-NB models for the 
meta-analysis of IR data in the context of a 
heterogeneous intervention effect with both rare events 
and SA studies. 

We found larger discrepancies between the 
univariate and bivariate versions of the Re-NB model 
than between the univariate and bivariate Re-Poi 
models. This suggested that taking into account a 
difference of over-dispersions between the intervention 
and control arms (i.e. !! ≠ !!) was more crucial than 
taking into account a difference between the residuals 
heterogeneity of the log(IR) (i.e. !!2 ≠ !!2).  

Overall, we found that except for the scenario of no 
over-dispersion where all models yielded similar results, 

the univariate and bivariate Re-NB models were more 
performant than the univariate and bivariate Re-Poi 
models. This result was by no means obvious, given 
the greater complexity of the Re-NB models, which 
comprise more parameters to be estimated than the 
Re-Poi models, and the particular settings considered 
of rare events with many SZ, DZ, and SA studies. 

Regarding the estimation of the mean intervention 
effect for non-malignant tumors (i.e. log!"" ), the 
bivariate Re-NB model was the only model to provide 
acceptable bias (never larger than 14% of the true 
parameter’s value) and coverage rates (most of the 
time above 90%) across all scenarios. Due to extreme 
scarcity of the data (i.e. very few events and studies), 
results obtained for the residual heterogeneity of the 
intervention effect (i.e. !!"#!""! ) were poor across all 
scenarios investigated and whatever the model 
considered. Finally, biases in the difference in mean 
intervention effect parameter (i.e. Δ!"#!"" ) were 
acceptable and approximately the same for the four 
models, across the four scenarios investigated. 
Nevertheless, both Re-NB models provided CIs for this 
parameter with better coverage rates than the Re-Poi 
models.  

To sum up, in settings of rare events, intervention 
effect heterogeneity, and SA studies, we highly 
recommend the use of the Re-NB models for the 
meta-analysis of incidence rate data. Indeed, count 
data often exhibit over-dispersion (as groups of 
individuals considered are heterogeneous and there 
are many unmeasured risk factors) and we showed 
that these models performed better than the univariate 
and bivariate Re-Poi models. Under the simulated 
scenario of equi-dispersion, the Re-NB models 

Table 7: Models Performances under Scenario 4 

True para-meter 
value Model Estimate Relative bias 

(in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = 0  

Uni Re-Poi  -0.18 - 86.29 2.09 81.7 

Bi Re-Poi -0.24 - 83.33 2.14 86.8 

Uni Re-NB -0.15 - 91.09 2.14 60.6 

Bi Re-NB -0.10 - 93.53 2.38 58.7 

!!"#!""! = 0.05  

Uni Re-Poi  1.00 1905.72 20.44 5.81 81.7 

Bi Re-Poi 1.04 1970.04 11.15 4.81 86.8 

Uni Re-NB 0.41 710.59 46.70 3.36 60.6 

Bi Re-NB 0.21 312.32 4.60 0.1* 58.7 

Δ!"#!"" = 0  

Uni Re-Poi  -0.06 - 65.73 2.13 81.7 

Bi Re-Poi -0.10 - 64.02 2.06 86.8 

Uni Re-NB -0.02 - 89.93 3.22 60.6 

Bi Re-NB 0.03 - 92.33 3.35 58.7 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 
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provided similar results as the Re-Poi models. We 
would furthermore recommend the bivariate Re-NB 
model, as it allows more flexibility in modelling the IRs 
than its univariate counterpart.  

Nevertheless, there are two limitations worth 
mentioning. First, convergence might be more difficult 
to achieve with the bivariate Re-NB model (i.e. 
proportion of converged runs achieved by this model 
was often below 60%, whereas it was most of the time 
above 80% for both Re-Poi models). We believe that 
convergence rates can be improved by selecting better 
starting values, which could be provided by the 
estimation of a less complex model such as the 
bivariate Re-Poi. Another solution could be to choose a 
conjugate distribution for the random effects to obtain a 
closed-form likelihood, which would be easier to 
maximize [24].  

Second, results obtained for the residual 
heterogeneity parameter were poor, whatever the 
scenario considered. Notice that our simulations were 
calibrated to mimic a real clinical dataset where not 
only events were rare, but also few studies were 
included in the meta-analysis. Gathering more studies 
might improve the situation. Nevertheless, even the 
most sophisticated statistical method cannot 
compensate for extreme scarcity of the data and 
absence of information. A Bayesian approach could be 
adopted, but it is well known that in the setting of rare 
events, the selection of priors matters and results are 
subjective [25-26]. Still another option could be to 
investigate the use of Zero-Inflated models [27]. Finally, 
to improve the CIs obtained for this parameter, one 
could consider using the profile likelihood method [28] 
instead of the Wald method 
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