Adverse Effects of Lead Acetate on Light Weight Protein of Bactrocera dorsalis

Rizwanul Haq1,*, M. Farhanullah Khan2 and Ehteshamul Haq3

1Department of Botany, Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal, Karachi, Pakistan
2Department of Zoology, University of Karachi, Pakistan
3Department of Zoology, Govt. National College, Karachi, Pakistan

Abstract: A large number of insects are influenced easily by a number of pollutants; such as, the influence of lead (as lead acetate) on Bactrocera dorsalis. Lead is considered to be an important toxic waste which could contaminate the environment, such as soil, air and water. Therefore, insects could be influenced by the lead. Bactrocera dorsalis, was studied at 48 hours post treatment, under the effects of lead acetate, in different concentrations. Lead is found to exert a definite specific physiological and morphological effect on these flies. It was observed that under the effect of lead abnormalities and deformities were developed in the larvae of flies. Thus these flies could present a useful module for the quick transmission of the environmental hazards due to lead contamination, which exerts a specific physiological and morphological effect on these flies. The purpose of the present work was to determine the effects of lead on proteins as a major indicator of physiological features along with morphological features of larvae of Bactrocera dorsalis flies.

Keywords: Effects, lead acetate, Bactrocera dorsalis.

INTRODUCTION

Lead is widely in use in industries. It is a significant environmental pollutant that contaminates food, water, urban soil and air. The detection of possible hazardous effects of this metal is, therefore a matter of urgent concern. Although, many studies have been carried out in relation with the biological effects of lead, its toxic potential against insects remains to be established. As it is established that lead has been found to have a definite cytogenetic effect [1-10]. The detection of possible hazardous effects of this metal is, therefore; an issue of urgent concern. Although, many studies have been however, its toxic potential against insects is established. Some studies have been carried out on natural populations of Bactrocera dorsalis in respect of effects of heavy metals, it has been found that contamination with heavy metals (Zinc, Lead etc.) can induce the effects on feeding behavior of Chironomidae, structural and functional modifications and malformations [11, 12]. Investigations on Bactrocera dorsalis indicated abnormalities due to the effect on meiotic nondisjunction [8]. However, sufficient data on the action of heavy metals and lead is limited available on the group of insects such as Bactrocera dorsalis, which are widely distributed species of the family tephritidae. Bactrocera dorsalis has been reported on different varieties of mango, the adult flies has been found infesting fruit on maturation during the month of june [13]. Bactrocera spp. is a regular pest of fruits, which considered being responsible for causing up to 25-50% loss in fruit yield. It has now been considered to infesting heavily mango, peach, plum, citrus and many others [14]. Bactrocera dorsalis has been observed from the entire oriental region on specific host plants [15]. Thus, the fruit fly Bactrocera dorsalis complex has been reported in a vast field as pest of fruits in Asia [16]. Thus the use of Diptera flies could present a useful module for the rapid screening of the environmental hazards due to lead contamination, which exerts a definite physiological and morphological effect on Diptera flies. Therefore, presently, the species Bactrocera dorsalis, were used to determine the deleterious effects of lead metal, to generate necessary data in respect of Bactrocera dorsalis, to use as a test system for heavy metals and to follow up the later teratomorphic effects. Electrophoresis is being broadly used for categorization of proteins and peptides for the diagnostic and/ or preparative unification of organic macromolecules [18]. The process of electrophoresis first used by [19] for the separation of proteins has found many dimensions in analyzing and separating macromolecules. These techniques, whether alone or in combination, have proved to be very useful for proteins and peptides and the complex proteome analysis, [20].

MATERIAL AND METHODS

Initial strains of the test materials, Bactrocera dorsalis were procured from the Plant protection and
Diagnostic Laboratory, DPP, Karachi. The oviposited mangoes with *Bactrocera dorsali* were collected from the said laboratory for further rearing. Larvae were reared under aseptic conditions on a usual prescribed diet with a little amended procedure [17]. The newly emerged 3rd instar larvae were collected in Petri dishes for the treatments. Batches of three bottles were prepared with 3 gram feed of mangoes and bananas pulp mixed with lead acetate in the desired concentration, as, 0.125 mg, 0.25 mg, 0.5 mg, 01 mg and 02 mg and a batch of three bottles was kept as control. Thereafter, 10 larvae were released in each bottle for 48 hours exposure. At the post 48 hours exposure mortality count was made then the surviving larvae were transferred in separate bottles on pure diet and kept till pupation and adult emergence. At each stage the effect of lead acetate of different concentration was recorded. The determination of lead acetate on protein of *Bactrocera dorsalis* larvae were studied with lead acetate kept for 48 hours exposure. Thereafter, crushing and homogenizing of the treated and untreated larvae was made. Preparation of solution, Reagent and chemicals are shown in Figures 1 and 2 respectively.

Preparation of Gel

In the process of electrophoresis, the capillary tubes of electrophoresis were cleaned by water and ethanol then dried it by air. The lower mouth of capillaries was covered by rubber stopper. 10 ml resolving gel was prepared with above ingredient. The mix solution was filled in capillaries tube, then added the 0.1 ml ammonium sulphate and 0.008 ml TEMED in capillaries, then left it for 3-4 hours for polymerization, after that 200μl. (micro litre) sample was added and then Bromophenol solution was added. After 30-40 min. the mouth of above and lower part of capillaries were exposed with Reservoir Buffer solution in the electrophoresis tank for one day under 110 volt. After that gel were exposed to coomassie blue solution for 2 hours, after colorization of Gel, It was kept in the destaining solution for removing the excess color on the Gel then the bands of proteins were observed. After this process the length and bands on Gel was measured for rf determination. Egg albumin was also run simultaneously, for the comparison.

RESULTS

The effect of lead acetate on proteins of *Bactrocera dorsalis* (dipterious flies) is shown in Table 1, in this
respect $Bactrocera$ $dorsalis$, protein were studied in comparison with Egg albumin as a reference protein. The rf. of Egg albumin was found as 0.04 as indicated in Table 1. Protein rf. 0.043, 0.58, 0.63, 0.72and 0.97 have not been observed in treated $Bactrocera$ $dorsalis$. While protein rf. 0.44, 0.56, 0.75, 0.95, have been detected as altered in $Bactrocera$ $dorsalis$.

Electrophoratic expression of various proteins flow as compared to egg albumin in treated and untreated $Bactrocera$ $dorsalis$ shown in Figure 3.

DISCUSSION

Protein (rf 0.43) is found in $Bactrocera$ $dorsalis$ (untreated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. This suggests that the protein XXVIII is changed with some alteration in the untreated insect. Protein (rf 0.44) is found in $Bactrocera$ $dorsalis$ (treated) that is seemed to be lighter than the egg albumin, while corresponding protein, in the untreated $Bactrocera$ $dorsalis$, was absent at the same rf. This suggests that the protein (rf 0.44) was changed with some alteration in the treated insect. Protein (rf 0.56) was found in $Bactrocera$ $dorsalis$ (treated) that is seems to be lighter than the egg albumin, while corresponding protein, in the untreated $Bactrocera$ $dorsalis$, was absent at the same rf. This suggests that the protein (rf 0.56) was affected with some alteration in the treated insect. Protein (rf 0.58) was found in $Bactrocera$ $dorsalis$ (untreated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. That suggest that the protein (rf 0.58) was affected with some extend. Protein (rf 0.63) was found in $Bactrocera$ $dorsalis$ (untreated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. That suggest that the protein (rf 0.63) was affected with some extend. Protein (rf 0.72) was found in $Bactrocera$ $dorsalis$ (untreated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. That suggests that the protein (rf 0.72) was affected with some alteration in the untreated insect. Protein (rf 0.75) was found in $Bactrocera$ $dorsalis$ (treated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. This suggests that protein (rf 0.72) was affected with some alteration in the untreated insect. Protein (rf 0.75) was found in $Bactrocera$ $dorsalis$ (treated) that is seems to be lighter than the egg albumin, while corresponding protein, in the treated $Bactrocera$ $dorsalis$, was absent at the same rf. This suggests that protein (rf 0.75) was affected with some extend.
the protein (rf 0.75) was affected with some alteration in the treated insect. Protein (rf 0.95) was found in Bactrocera dorsalis (treated) that seems to be lighter than the egg albumin, while corresponding protein, in the untreated Bactrocera dorsalis, was absent at the same rf. This suggests that the protein (rf 0.95) was affected with some alteration in the treated insect. Protein (rf 0.97) was found in Bactrocera dorsalis (untreated) that seems to be lighter than the egg albumin, while corresponding protein, in the treated Bactrocera dorsalis, was absent at the same rf. This suggests that the protein (rf 0.97) was affected with some alteration in the untreated insect.

Bactrocera dorsalis treated with different doses of lead acetate viz. 0.125 mg, 0.25 mg, 0.5 mg, 1.0 mg and 2.0 mg resulted deformities. [21], indicated cellular damage in processes of lead exposed to PC-12 cells. After lead exposure the N-acetylysteine (NAC), glutathione (GSH), glutathione disulfide (GSSG) and malondialdehyde (MDA), were found effected after treated to various doses of lead acetate, these results could be correlated with the present findings with the presence of affected proteins in the lead treated insects [22], indicated that, lead is a pollutant heavy metal, which can be absorbed by the digestive system in a 10% [23], indicated that when lead incorporated by cells, it produces free radicals, H2O2 and OH [24] found free radicals can also produce simple breaks in the DNA chains these results resembled with present finding that exposure of lead produced the abnormal morphological effects in the larvae and the adults emerged therefrom [25] reported newly hatched nymphs of an Indian short horned grasshopper Oxya fuscovittata(Marschall) Orthoptera: Acrididae were fed on foods treated with three sub lethal concentrations of CdCl i.e. 2.25 ppm in oat or dose 1 (d1), 50 ppm in oat or dose2 (d2) and 100 ppm in oat or dose3 (d3) until they reached on adult stage for a complete generation. Growth was measured in terms of specific growth rate (SGR), average daily growth (ADG), percent weight gain (PWG) and Growth rate (GR). They observed that growth retardation occurred significantly with the increase of doses in both sexes. Adult life period found reduced in both sexes however, in females a significant difference was found only with higher doses (d2 and d3). Lower survival was in d3 was observed. These adverse effect of heavy metals on diptera are in the line with the present findings [26] found morphological changes in wild Drosophila species that found over almost all of Europe, under the effects of lead. The effects of lead on inversion polymorphism were studied by cytological analysis of gene arrangements on all of the five acrocentric chromosomes, as well as by cytological analysis of karyotypes on all of the four autosomes. The frequencies of particular gene arrangements on the four autosomes changed significantly in the samples maintained on medium not supplemented with lead. The frequencies of some gene arrangements on all of the five acrocentric chromosomes changed significantly in the flies maintained on media supplemented with lead. The length of exposure to different lead concentrations results in a significant change in the frequency of a few gene arrangements on two autosomes. Their results showed that different concentrations of lead, and exposure period caused affects on chromosome. the effects on the DNA configuration and chromosome cause effects on morphology and the physiology of the affected organism, in this way presently the obtaining of altered protein bands, deform larvae, pupae and deform adults are in the line with the previous finding.

REFERENCES

Adverse Effects of Lead Acetate on Light Weight Protein

http://dx.doi.org/10.1016/0022-1910(65)90070-3

http://dx.doi.org/10.1016/0022-1910(70)90070-3

http://dx.doi.org/10.1039/tf9373300524

http://dx.doi.org/10.1007/s00244-004-0025-0

http://dx.doi.org/10.1111/j.2006.0018-0661.01939.x

Received on 25-04-2013
Accepted on 14-06-2013
Published on 28-06-2013

http://dx.doi.org/10.6000/1927-5129.2013.09.57

© 2013 Haq et al.; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.