The Gauß Sum and its Applications to Number Theory

Nadia Khan¹*, Shin-Ichi Katayama², Toru Nakahara³ and Hiroshi Sekiguchi⁴

¹National University of Computer & Emerging Sciences Lahore campus, Pakistan
²University of Tokushima, Japan
³Saga University, Japan
⁴Daiichi Tekkou Co., 5 Chome Tokaimachi, Tokai, Aichi Prefecture 476-0015, Japan

Abstract: The purpose of this article is to determine the monogenity of families of certain biquadratic fields \(K \) and cyclic bicubic fields \(L \) obtained by composition of the quadratic field of conductor 5 and the simplest cubic fields over the field \(Q \) of rational numbers applying cubic Gauß sums. The monogenic biquadratic fields \(K \) are constructed without using the integral bases. It is found that all the bicubic fields \(L \) over the simplest cubic fields are non-monogenic except for the conductors 7 and 9. Each of the proof is obtained by the evaluation of the partial differentials \(\zeta - \zeta' \) of the different \(\partial_{\zeta-\zeta'}(\xi) \) with \(F = K \) or \(L \) of a candidate number \(\xi \), which will or would generate a power integral basis of the fields \(F \). Here \(\rho \) denotes a suitable Galois action of the abelian extensions \(F/Q \) and \(\partial_{\zeta-\zeta'}(\xi) \) is defined by \(\prod_{\rho \in \rho_{F/Q}}(\zeta - \zeta') \), where \(G \) and \(\iota \) denote respectively the Galois group of \(F/Q \) and the identity embedding of \(F \).

Keywords: Monogenity, Biquadratic field, Simplest cubic field, Discriminant, Integral basis.

INTRODUCTION

Let \(F \) be an algebraic number field over the field \(Q \) of rational numbers with the extension degree \(n = [F:Q] \). Then the ring \(Z_F \) of integers in \(F \) has an integral basis \(\{\omega_j\}_{j=1}^{m} \) such that \(Z_F \) is the \(\mathbb{Z} \)-module \(Z \cdot \omega_1 + \cdots + Z \cdot \omega_m \) of rank \(n \). If there exists a suitable number \(\xi \in F \) such that \(Z_F = Z \cdot 1 + \cdots + Z \cdot \xi^{n-1} \), then it is said that \(Z_F \) has a power integral basis or \(F \) is monogenic. It is known as Dedekind-Hasse’s problem to determine whether an algebraic number field is monogenic or not [7, 5]. Let \(\text{Ind}_F(\xi) \) denote the index \(\left\lfloor \frac{d_F(\xi)}{d_F} \right\rfloor \) of an integer \(\xi \) in \(F \) with the discriminant \(d_F(\xi) \) of a number \(\xi \) and the field discriminant \(d_F \) of the field \(F \). This value coincides with \(\sqrt{\frac{\text{The volume of the parallelootope spanned by } (\xi^{n-1})_{1 \leq j \leq n} \times 4 \text{ (quadrants)}}{\text{The volume of the parallelootope spanned by } (\omega_i)_{1 \leq i \leq m} \times 4 \text{ (quadrants)}}} \) for \(n = 2 \). Then it is enough for the monogenity of \(F \) to find a number \(\xi \) in \(F \) such that the value \(\text{Ind}_F(\xi) \) is equal to 1. On the other hand, to show the non-monogenity we must prove that \(\text{Ind}_F(\xi) > 1 \) for every number \(\xi \) in \(F \).

Let \(\zeta_n \) be an \(n \) th root of unity and \(k_n \) be the \(n \) th cyclotomic field \(Q(\zeta_n) \) with the extension degree \(\phi(n) \), where \(\phi \) is the Euler totient function. Let \(G \) be the Galois group of \(k_n/Q \) and \(\hat{G} \) the character group of \(G \). For a character \(\chi \in \hat{G} \), the Gauß sum \(\tau_\chi \) attached to \(\chi \) is defined by the sum

\[\sum_{x \in \mathbb{Z}} \chi(x) \zeta_n^x \]

Then \(\tau_\chi \) belongs to the field \(k_n \cdot k_n \) with the degree \(m \mid \phi(n) \) of \(\chi \). We find two phenomena.

Theorem 1.1. Let \(\lambda_\iota \) be a biquadratic character of conductor \(\iota \). Let \(K \) be a biquadratic field \(Q(\tau_{\lambda_n}, \tau_{\lambda_m}) \), where \(\tau_{\lambda_n} \) is the quadratic Gauß sum attached to \(\lambda_n \). Then

1. \(K \) is non-monogenic, if \(m = n = 1 (\text{mod } 4) \) and \((m,n) = 1 \).
2. There exist infinitely many monogenic biquadratic fields \(K \), if \(m = 0 (\text{mod } 4) \), \(n = 1 (\text{mod } 4) \) and \((m,n) = 1 \) or \(m = n = 0 (\text{mod } 4) \) and \((m,n) = 4 \) or \(8 \).

The proof is obtained without using any integral basis of a field \(Q(\tau_{\lambda_n}, \tau_{\lambda_m}) \). This result is a
Theorem 1.2. There does not exist any monogenic sextic bicubic fields $Q(\tau_{j,5})$ with the quadratic Gauss sum $\tau_{j,5}$ and the cubic Gauss period $\eta_{9\nu}$ attached to the quadratic character λ_5 and the cubic one ν, with the coprime conductors 5 and n, respectively, where the Gauss period $\eta_{9\nu}$ is determined by $((-1)^r + \tau_{j,5} + \tau_{j,5}^3)/3$ with the cubic Gauss sum $\tau_{9\nu}$ and the number r of distinct prime factors of n, when n is square free and the fields $Q(\eta_{9\nu})$ range over the simplest cubic fields of conductor $n = a^2 + 3a + 9$ except for $n = 7$ of $a = -1$ and 9 of $a = 0$.

In the case of the prime conductor p of quadratic character λ_p^{\ast} with prime discriminant $p^{\ast} = (-1)^{p-1}/2$, p and cubic one ν, the monogenity of the sextic field $Q(\tau_{j,5}^{\ast}, \eta_{9\nu})$ has been determined by the first and the third authors such that there does not exist any cyclic sextic fields $Q(\tau_{j,5}^{\ast}, \eta_{9\nu})$ except for the prime power conductors 7, 3 and 13 [12].

There are related works on the abelian; pure sextic and octic extensions F / Q [11, 23, 17, 15, 16, 6, 14, 3]; [4, 9, 2, 1, 8].

Proof of Theorem 1.1.

The next lemma is fundamental to simplify the proof.

Lemma 2.1. Assume that $Z_k = Z[\xi]$ for a number $\xi = \alpha + \beta \omega$ with $\alpha, \beta \in Q(\tau_{j,5})$, $\omega \in Q(\tau_{j,5})$ and field discriminants m and n. Then

1. β is a unit in $Q(\tau_{j,5})$.
2. β and ω are units in $Q(\tau_{j,5})$ and $Q(\tau_{j,5})$, respectively, if $\alpha = 0$.

Proof of Lemma 2.1. Since $K = Q(\tau_{j,5}) \cdot Q(\tau_{j,5})$, there exist $\alpha, \beta \in Q(\tau_{j,5})$ and $\omega \in Q(\tau_{j,5})$ such that $\xi = \alpha + \beta \omega$. By $Ind_k(\xi) = 1$, it holds that $d_k = d_{Q(\tau_{j,5})} \cdot d_{Q(\tau_{j,5})} = d_k(\xi) = \pm N_k(\delta_k(\xi))$ with $\ell = \text{lcm}(m, n)$, where the different $\delta_k(\xi)$ of a number ξ with respect to K / Q is defined by $(\xi - \xi^{-\omega})(\xi^{-\omega})(\xi - \xi^{-\omega}) \cdot \text{[25]})$. The Galois group $G(K / Q)$ coincides with (σ, τ) with $G(Q(\tau_{j,5}) / Q) = \langle \sigma \rangle$ and $G(Q(\tau_{j,5}) / Q) = \langle \tau \rangle$, where $<\sigma, \ldots, \sigma>$ with σ_j in G means the subgroup generated by $\{\sigma_j\}_{j \in \mathbb{Z}}$ of a group G. Then it holds that $\sigma : \sqrt{m} \mapsto -\sqrt{m}$, $\sqrt{n} \mapsto \sqrt{n}$ and $\tau : \sqrt{n} \mapsto \sqrt{n}$.

1. Thus we have that $\xi - \xi^{-\omega} = \beta(\omega - \omega^\ast)$ and $\xi - \xi^{-\omega} = \beta(\omega - \omega^\ast)$ = $\delta_{Q(\tau_{j,5})}$, ω and β are units in K.

Proof of Theorem 1.1. (1) Suppose that $Z_k = Z[\xi]$ with $\xi = \alpha + \beta \omega$, $\alpha, \beta \in Q(\tau_{j,5})$ and $\omega \in Q(\tau_{j,5})$. (i) Assume that $\alpha = 0$. Put $\beta = s + t \sqrt{m}$ and $\omega = u + \sqrt{n}$. Then by $\xi - \xi^{-\omega} = t \sqrt{m} \omega = \sqrt{m}$, $t = \pm 1$ holds. By $\xi - \xi^{-\omega} = \beta v \sqrt{m} \omega = \sqrt{n}$, $v = \pm 1$ holds. Thus it is deduced that $N_{K / Q(\tau_{j,5})}(\xi - \xi^{-\omega}) = N_{K / Q(\tau_{j,5})}(s + t \sqrt{m} \omega + \sqrt{n})$.

(2) Let m_n denote the field different of an algebraic number field M. Since it is deduced that $\xi - \xi^{-\omega} = \beta(\omega - \omega^\ast)$ and $\xi - \xi^{-\omega} = \beta(\omega - \omega^\ast)$ = $\delta_{Q(\tau_{j,5})}$, ω and β are units in K.

Therefore K is non monogenic.

(2) Let $m = 4(4t - 1)$ and $n = 4(4t + 3)$ with a square free number $(4t - 1)(4t + 1)$. Then the biquadratic fields $K = Q(\tau_{j,5}, \tau_{j,5})$ coincides with $Q(\alpha, \beta)$ with $\alpha = \sqrt{m}$ and $\beta = \sqrt{n}$. Thus by the Hasse's Conductor-Discriminant Theorem, the field discriminant d_k is equal to $m \cdot n \cdot m / 4 = 2^4 \cdot (4t - 1)(4t + 3)$ [25]. Choose a number $\sqrt{4t - 1 + \sqrt{4t + 3}} = \alpha + \beta$ as ξ. By
\(T_{K/Q}(\tau_{L_3}) (\xi) = \beta/2 \) and \(N_{K/Q}(\tau_{L_3}) (\xi) = (-\alpha^2 + \beta^2)/4 = 1 \), \(\xi \) belongs to the ring \(Z_K \) because of
\(K \cap Z_{Q(z_{L_3})} = Z_K \), where \(Z_F \) means the integral closure of the ring \(Z_F \) of algebraic integers in a field \(F \), and for a relative field extension \(M/F \) of finite degree of algebraic number fields \(M \) and \(F \), \(T_M/F(\xi) \) and \(N_M/F(\xi) \) of a number \(\xi \) in \(M \) denote the relative norm and the relative trace, respectively. By the definition, it follows that \(d_{K/Q}(\xi) = (-1)^{4k-1} N_K(\partial_K(\xi)) \) \(= N_{K/Q}(\alpha/2; \beta/2; (\alpha+\beta)/4) = d_K \). Thus we obtain
\(Z_K = Z[1, \xi, \xi^2, \xi^3] \).

On the cardinality of the monogenic fields \(K \) the following lemma is available.

Lemma 2.2. There exist infinitely many square-free numbers \(16t^2 - 8t - 3 \) for \(t \in \mathbb{Z} \).

Proof of Lemma 2.2 See [18, 21] or use the slightly modified Lemma 8.5 in 1st ed. of [20] with the value of \(\zeta(2) \) and prime number theorem [19]. Moreover on the density of
\[\#\{D = 16t^2 - 8t - 3 = (4t-1)^2 - 4; D \leq x\} \quad \text{square-free}, \]
\[C = \frac{1}{4} \prod_{\text{odd primes}} (1 - (2/p^2)) \quad \text{and hence} \]
\[C > \frac{1}{4} \left(1 - \frac{2}{9} \right) > 0 \]
holds by
\[1 - \frac{2}{9} = 1 - \sqrt{\frac{2}{9}} \quad \text{for any prime number} \ p \neq 3 \quad [10, 13]. \]

Proof of Theorem 1.2.

Let \(k \) be a real quadratic field \(Q(\tau_{L_3}) \) and \(K \) the simplest cubic fields which is defined by the cubic equation; \(x^3 = ax^2 + (a + 3)x + 1 \) with \(d_K = (a^2 + 3a + 9)^2 = d_K(\eta) \) for the field discriminant \(d_K \) and the discriminant of \(d_K(\eta) \) of a solution \(\eta \) of the equation \(x^3 - ax^2 - (a + 3)x - 1 = 0 \) derived by D. Shanks [22]. The composite field \(k \cdot K \) is denoted by \(L \). Then the field \(L \) makes a sextic bicubic extension field over the field \(Q \). Assume that \(Z_L = Z[\xi] \) for an integer \(\xi \) in \(L \). Let \(\sigma \) and \(\tau \) be generators of the Galois groups \(G(K/Q) \) and \(G(k/Q) \), respectively. Then we consider the following identity among the partial different of a number \(\xi \) in \(L \);
\[(\xi - \xi_1^r)(\xi - \xi_2^r) - (\xi - \xi_1^r)(\xi - \xi_2^r)^r = 0. \]

Since these three products of the differents are invariant by the action \(\tau \), they belong to the the cubic field \(K \). By the assumption of \(\text{ind}_k(\xi) = 1 \), it is deduced that \(\partial_k(\xi) = \partial_L = \partial_K \alpha \) by \(\text{gcd}(\partial_K, \partial_L) = 1 \). Here \(\partial_L \) and \(\partial_M \) denote the different of a number \(\xi \) and the relative field different with respect to \(L/K \), respectively. For an ideal \(\mathfrak{c} \) and a number \(\gamma \) of a field \(M \), \(\mathfrak{c} = \gamma \) means that both ideals \(\mathfrak{c} \) and \((\gamma) \) are equal to each other in \(M \). On the above identity, we explain the meaning for the case of a prime conductor \(p \) of \(K \).

By \(\partial_L(\xi) = (\xi - \xi_1^r)(\xi - \xi_2^r)^r \) \((\xi - \xi_1^r)(\xi - \xi_2^r)^r = \partial_L \) it holds that \((\xi - \xi_1^r) = (\tau_{L_3} \xi) \), \((\xi - \xi_2^r) = \mathfrak{c} \) and \((\xi - \xi_2^r)^r = (1) \) for the ramified prime ideals \((\tau_{L_3}) = (\sqrt{5}) \) in \(k \) and \(\mathfrak{c} \) in \(K \) with \((\tau_{L_3}) = (5) \) and \(\mathfrak{c}^3 = (p) \). Thus on the difference of the two products in (*) we obtain \(N_K([\xi - \xi_1^r]) (\xi - \xi_2^r)^r - (\xi - \xi_1^r)(\xi - \xi_2^r)^r = N_K([\xi - \xi_1^r]) (\xi - \xi_2^r)^r \right) = \pm 1 \), and hence \(N_K([\xi - \xi_1^r]) (\xi - \xi_2^r)^r = (\sqrt{5})^3 \) \(= \pm 1 \) \((\text{mod} \ p) \), namely \(5^3 + 1 = 2 \cdot 3 \cdot 7 = 0 \) or \(5^3 - 1 = 2 \cdot 3 \cdot 31 \equiv 0 \) \((\text{mod} \ p) \) holds. Since \(p \) is a conductor \(a^2 + 3a + 9 \) of a simplest cubic field, we obtain the simplest cubic fields \(K \), which should coincide with the maximal real subfield \(k \); for \(a = 1 \) of 7th cyclotomic \(k \), or \(k_9 \) for \(a = 0 \) of 9th cyclotomic \(k_9 \). Since a sextic field \(L \) is a relative cubic extension over the quadratic subfield \(k \), a candidate element \(\xi \) of \(Z_L = Z[\xi] \) is represented by \(\alpha + \beta \omega \) with an integer \(\alpha \), a unit \(\beta \in K \) and a unit \(\omega = (\frac{1 + \sqrt{5}}{2}) \). In fact, for the case of \(k \), we can choose \(\omega \) as \(\xi \) with the Gauß period \(\eta \) attached to a cubic character \(\psi \), and for the case of \(k_9 \) we can find \(\eta + \omega \) as \(\xi \) with the period \(\eta \) attached to a cubic character \(\psi_9 \). For an integral basis \(\{\xi_{i}\}_{i=0}^{29} \) of \(L \), we have \(\{\xi_{i}\}_{i=0}^{29} \) \(\text{mod} \ \mathbb{Z}_{2} \). The sextic field \(L \) is generated by \(\xi = \eta \omega \), which satisfies \((\xi/\omega)^3 + (\xi/\omega)^2 - 2(\xi/\omega) - 1 = 0 \), namely by \(\xi^3 - 2\xi - 1 = (-\xi^2 + 2\xi + 2) \) it holds that \(\left(\frac{\xi^3 - 2\xi - 1}{-\xi^2 + 2\xi + 2} \right)^2 \). First we examine the fact for the sextic field \(L \) by PARI/GP, which is written in Section 4. Next since the fields \(K \) and \(k \) are linearly disjoint, that is \(K \cap k = Q \) by \(\text{gcd}(d_k, d_\lambda) = 1 \), the ring \(Z_L \) of the
composite field L coincides with $Z_k \cdot Z_r = Z[\eta, \eta^2] \cdot Z[\omega] = Z[\eta, \eta^2, \omega, \eta^2 \omega, \omega^2]$. Thus for $\xi=\eta+\omega$ the representation matrix A of
$\{1, \xi, \xi^2, \xi^3, \xi^4, \xi^5\}$ with respect to $\{\eta, \eta^2, \omega, \eta^2 \omega, \omega^2\}$ is
equal to

$$
(\{1, 1, 1, 2, 9\}, \{2, 2, 2, 15\}, \{1, 1, 1, 6, 12\},
\{2, 2, 3, 15\}, \{1, 4, 3, 25\}, \{1, 1, 2, 9, 20\}),
$$

which is equivalent to

$$
(\{\cdot, \cdot, \cdot, \cdot, \cdot\}, \{\cdot, \cdot, \cdot, \cdot, \cdot\}),
$$

and hence whose determinant is equal to -1, namely the matrix A belongs to $SL_n(Z)$, where \cdot means 0 and
$\cdot M$ for a matrix M denotes the transposed one. Thus the sctic field
$L=k \cdot k^*$ is actually monogenic.

In the case of $L=k \cdot k^*$, the choice $\xi=\eta+\omega$ would be
failed, where the Gauß period η is a root of
g(y) = $y^3 - 3y + 1$. Then we select $\eta+\omega$ as a candidate
of a power integral basis; $Z[\xi]=Z_L$. Since the simplest cubic field is monogenic,
$N_L((\xi-\xi^2))(\xi-\xi^2)$
$= N_L((\eta-\eta^2)(\eta-\eta^2)) = p^2$ holds. Thus it follows that
$N_L(d_L) = (\xi-\xi^2) = p^2$ and
$N_L(d_L(\xi-\xi^2)) = 5^3$. On the other hand, by
$\delta_k = \delta_k e_k$ it is deduced that
$d_L = N_L(\delta_k) N_L(\delta_k) = d_L^{d(\xi)} = (3^2)^2 \cdot 5^3 = 3^4 \cdot 5^3 = 820125$. Here for an
ideal \mathfrak{p} in a field M, $N_L(\mathfrak{p})$ means the ideal norm of
\mathfrak{p} with respect to M.
Then we must confirm that the partial factor $\xi-\xi^2$ and hence $\xi-\xi^2 r$
are not obstacle factors, namely they are units in L. We take the relative norm
$N_L((\xi-\xi^2)) = N_L((\eta-\eta^2)+(\xi-\xi^2)) = (\eta-\eta^2) + (\xi-\xi^2) + (\eta-\eta^2) \cdot (\xi-\xi^2) + (\eta-\eta^2)+(\xi-\xi^2) \cdot (\eta-\eta^2) + (\eta-\eta^2) \cdot (\eta-\eta^2) \cdot 5 + 5^3 = 5^3$. On the first
product, we obtain $C = 3 N_L(\eta)$ and
$D = (\eta+\eta^2)+(\eta+\eta^2)+(\eta+\eta^2)$. By
$(\eta+\eta^2)+(\eta+\eta^2)+(\eta+\eta^2)$, it follows that
$C + D = 3 N_L(\eta)$. We obtain
$C = D = B_1 + 3 N_L(\eta)$
$+ S_1 N_L(\eta)$. Here we use the relations
$B_1 = B_3 + (D + C) N_L(\eta)$ with
$B_3 = (\eta+\eta^2)+(\eta+\eta^2)+(\eta+\eta^2)$,
$B_3 = (\eta+\eta^2)+(\eta+\eta^2)+(\eta+\eta^2)$. Then we have
$B_3 = 24$ and $S_3 = -3$, and hence $C \cdot D = -18$. Thus the set
$\{C, D\}$ of values is equal to $\{-6, 3\}$. Then it deduces for the derivative
g(y) of $g(y)$ that
$N_L(\xi^{\xi^3}) = -c + D + (\eta+\eta^2) - (\eta+\eta^2) + (\eta+\eta^2) \cdot 5 + 5^3 = 9 - 4 \cdot 5$, and hence
$N_L(\xi^{\xi^3}) = 81 - 16 \cdot 5 = 1$.

3. EXPERIMENTS AND FUTURE WORKS

To find new phenomena on Number Theory, experiments by PARI/GP are sometimes indispensable. Let L be the cyclic sextic field $Q(\eta, \omega)$ over the simplest cubic field with a root η of the cubic polynomial
$x^3 = ax^2 + (a+3)x + 1$ and a unit

$$
\omega = \frac{1 + \sqrt{5}}{2}
$$
in the real quadratic field with prime discriminant 5. Select a number $\eta+\omega$ as a candidate of integral power basis; $Z_L = Z[\xi] = Z[\{1, \overline{\xi}, \overline{\xi}^2\}]$.

PARI/GP gives an affirmative answer as follows.

\fbox{\text{Then PARI/GP gives a power integral basis}}
$g \rightarrow$ nbasis((x^3-8*x-1)^2-(x^3-2*x+1)*(x^2+2*x+2)-(-x^2+2*x+2)^2) \#the field discriminant of d_L (of the sextic field L
gp> \text{nfdis}(x^3-3*x-1)^2-(x^3-2*x+1)^2 \#and the prime number decomposition of d_L (of p-field) \text{factor}(300125) \#namely}
\text{d_L[5]=5^3 \cdot d_{-1}[5]} \text{\#d_{-1}[5]} = 5^3 \cdot \text{d_{-1}[5]} \text{\#d_{-1}[5]=5^3 \cdot d_{-1}[5]} = 5^3 \cdot d_{-1}[5] = 5^3 \cdot d_{-1}[5] = 5^3 \cdot d_{-1}[5].$

Since the fields $Q(\tau_{\delta}) = Q(\sqrt{5})$ and the simplest cubic field $Q(\eta)$ with $\eta = -\eta^2 + 2 + \eta + 1$ are linearly disjont, that is, $(\partial Q(\tau_{\delta}))\partial Q(\eta)) = 1$, the set
$\{\eta \cdot \omega\} \not\equiv 0 \mod{5}$ makes an integral basis of L. Let A be the representation matrix of
$\{\xi \cdot \omega\} \not\equiv 0 \mod{5}$, then it turns out that A belongs to
$SL_n(Z)$ in Section 3. Then for $\xi=\eta+\omega$ it is deduced that
$Z[\xi] = Z_L$, namely the experiment is correct.

FUTURE WORKS

1. Generalize Thorem 1.2 for the cyclic sextic fields $L = K \cdot k$ in which any simplest cubic field K and any
real or imaginary quadratic field k with $(\delta_k, \delta_k) = 1$.

2. Let p and ξ_p be a prime number and p the prime number of p-field, respectively and F_p the finite field of
p element. Let τ_{χ} be the Gauß sum $\sum_{x \in F_p} \chi(x) \xi^x_{p}$ attached to the non-trivial character χ belonging to the
character group \(\hat{F}_p^\times \) with the multiplicative group \(F_p^\times = F_p \setminus \{0\} \). Let \(J(\chi, \lambda) = \sum_{x,y \in F_p} \chi(x) \lambda(y) \) be the Jacobi sum attached to the non-trivial characters \(\chi \) and \(\lambda \). Then the relation

\[
J(\chi, \lambda) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
\]

of Gauß sum and Jacob sum is deduced [12]. Let \(\Gamma(x), B(x, y) \) be the Gamma function

\[
\int_0^1 e^{-t^{-i} \sigma} \, dt \quad (\Re(x) > 0)
\]

and Beta function \(\int_0^1 t^{-i}(1-t)^{-i} \, dt \quad \Re(x), \Re(y) > 0 \), respectively. Then the next iteration is well known;

\[
B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}.
\]

Thus find a suitable interpretation between Jacobi sum and Beta function.

ACKNOWLEDGEMENTS

The authors thank to the referee for his/her kind notices to Lemma 2.2 with the references [18] and [21].

REFERENCES

