A Study of C-MYC, SOX10 and BCL-2 Proteins Expression in Head and Neck Mucosal Melanomas

R. Hsieh¹*, M.L. Prasad², M.M.S. Nico³, H. Tavares⁴, A. Altemani⁴, R.S.S. Macarenco⁵ and S.V. Lourenço⁴

¹Department of Stomatology, Dental School, University of São Paulo, Brazil
²Department of Pathology, Yale School of Medicine, USA
³Department of Dermatology, Medical School, University of São Paulo, Brazil
⁴Department of Pathology, Medical School, University of Campinas, Brazil
⁵Department of Pathology, Cancer Institute, University of São Paulo, Brazil

Abstract: Background: Head and Neck Mucosal Melanoma (HNMM) is rare, accounting 1% of all melanomas in USA, and 6% in Japan. Melanoma’s development is a complex process involving activation of proto-oncogenes and loss of tumor suppressors. BCL-2 oncogene encodes a family of anti-apoptotic proteins and is overexpressed in melanomas. On the other hand, proto-oncogene C-MYC is a transcriptional factor and plays crucial role both in driving cell proliferation and promoting apoptosis, its overexpression has been associated to melanoma progression. Moreover, oncogene SOX10 cooperates with other transcription factors to direct the development and differentiation of melanocytes. These three nuclear markers are associated to melanoma’s metastatic risk.

Methods: We studied of BCL-2, C-MYC and SOX10 proteins in 19 Formalin Fixed Paraffin Embedded cases of HNMM from Yale School of Medicine and 10 cases from University of São Paulo by Alkalin Phosphatase immunohistochemistry technique.

Results: We considered as positive expression when over 25% of tumor cells were immunostained. We observed 27/29 were positive to BCL-2 and 28/29 cases showed SOX10 expression (both markers showing immunostaining in over 75% of tumor cells). However, we noticed variable expression for C-MYC in 15/29 of HNMM cases.

Conclusions: According to ours results, we suggest that BCL-2 and SOX10, should be good adjuctive biomarkers for HNMM, however lower expression of C-MYC has not shown to play main role in the HNMM development, thus further molecular biology studies should corroborate this present study.

Keywords: Mucosal melanoma, C-MYC, SOX10, BCL-2.

INTRODUCTION

The earliest case of mucosal melanoma was mentioned by Weber in 1859, later it was recognized as a specific pathological entity by Lucke in 1869. However, in the English literature, the first mucosal melanoma was reported by Lincoln in 1885 [1-3]. Mucosal melanoma is generally developed in ectodermally derived mucosal tissues such as: sinonasal and oral cavities, nasopharynx, larynx, tracheobronchial tree and upper esophagus [2-6].

Head and Neck Mucosal Melanoma (HNMM) is a very rare and aggressive neoplasm and it accounts 0.3 – 3.8% of all melanomas cases in Unites States [2-8], and 6% in Japan [9]. HNMM has a poor prognosis with an overall 5 year survival rates ranging from 10 – 35% [6-8,10-12], typically it is associated with local lymph node and/or distant metastasis in the early stages of this disease [5,12].

*Address correspondence to this author at the Avenida Doutor Enéas Carvalho de Aguiar, No. 470, Prédio II, 2o andar, CEP: 05403-000, São Paulo, SP, Brazil; Tel: +55 11 3061-7064; Fax: +55 11 3061-7065; E-mail: r.hsieh@usp.br

© 2016 Lifescience Global
induced EMT (epithelial-mesenchymal transition), but it is unclear how these signals are interacted and integrated in melanoma metastasis [21].

SOX-10 is a transcription factor that activates upstream of MITF expression and synergizes with MITF activating downstream targets [22-23] in melanin synthesis, and also in melanomagenesis [24] It is expressed in migratory neural crest cells, melanoblast and melanocytes, and overexpressed in melanomas [25]. It is present in 31% of melanocytic nevi; 9-43% of primary melanomas; 22-50% of metastatic melanoma [22,26], and it represents a promising target for congenital naevi and melanoma treatment [26].

On the other hand, BCL-2 a proto-oncogene that prolongs the survival of cells in the absence of required growth factors by blocking apoptosis, even in the presence of apoptotic stimulation [27], and also contributes to neoplastic cell growth [28]. The regulation of BCL-2 expression is demonstrated to be critical for melanocyte and melanoma survival [29] and it has been attributed to MITF, and its overexpression reduced basic apoptosis and sensitivity of melanoma cells for proapoptotic stimuli [30]. However, the role of BCL-2 still controversial in cutaneous melanoma [31].

Due to the rarity of Head and Neck Mucosal Melanoma, and its etiopathogenesis still unclear, we evaluated the protein expression of C-MYC, SOX10 and BCL-2 nuclear markers, which have been associated to melanoma’s metastatic risk.

MATERIALS AND METHOD

Tumor Specimens and Clinical Data

A total 10 cases of Primary Nasal Mucosal Melanoma from the State of São Paulo Cancer Institute (ICESP), Sao Paulo, Brazil and Department of Pathology, Medical School, University of Campinas, Brazil. Additionally, 19 cases of Melanomas (including head and neck primary mucosal melanomas, recurrent and metastasis) were organized in TMA from Department of Pathology, Yale School of Medicine, New Haven CT, USA. Clinical features, such as gender, age, site of tumor, and presence of metastasis; treatment; and outcomes were assessed. Five cutaneous melanomas were included as control cases. The histopathology of all cases was reexamined.

Immunohistochemistry Technique (IHC)

All Formalin-fixed paraffin-embedded (FFPE) sections were first baked and deparaffinised. Antigen retrieval was accomplished by heating sides in Bond Epitope Retrieval Solution 1 for 30 minutes, followed by primary antibody incubation of C-MYC (clone Y69, dilution 1:100); SOX10 (polyclonal, dilution 1:25) and BCL-2 (clone 124, dilution 1:150) diluted with Dako Antibody Diluent (Ref S0809, DAKO) and the immunohistochemical staining were accomplished using labeled Leica Refine Red Detection System on Bond III Autostainer (Leica Biosystems, Buffalo Grove, Indiana). Finally, all sections were counterstained with CAT Hematoxylin (Biocar Medical) and stained slides were mounted with Cytoseal™60 (Ref 8310-4, Thermo Scientific).

Immunohistochemical Interpretation

Each case was classified and scored as: 0%; <5%; <10%; >10%; >25%; >50%; >75% and >90% according to the percentage of immunostained tumor cells. We only consider positive expression for C-MYC; SOX10 and BCL-2 proteins, when more than 25% of tumor cells were stained. All cases were analyzed by two researchers.

RESULTS

We observed 27/29 were positive to BCL-2 and 28/29 cases showed SOX10 expression in over 75% of tumor cells. However, we noticed variable nuclear expression for C-MYC in 15/29 of HNMM cases. BCL-2 showed cytoplasmic pattern, on the other hand SOX 10 and C-MYC, both markers showing nuclear immunostaining (Figures 1 and 2).

DISCUSSION

In 2001, no significant difference of C-MYC expression was found between nevi and primary cutaneous melanomas, however 70% of all investigated melanoma metastases showed nuclear and cytoplasmatic staining [18]. Human normal skin and nevi did not show positive staining for C-MYC, however the expression of C-MYC was upregulated in primary melanoma and even more in metastatic melanomas [21]. In an immunocytochemical study, C-MYC oncoprotein was localized in the cytoplasm of tumor cells and it was expressed 14/30 cases of metastatic melanomas [32]. On the other hand, we found positive nuclear immunostaining of C-MYC in 51% of our HNMM cases: 7/16 primary tumor and 8/12 metastatic tumor.

The SOX10 cytoplasmic and perinuclear expression was detected in 43% of primary melanomas with
A Study of C-MYC, SOX10 and BCL-2 Proteins Expression in Head

Figure 1: C-MYC, SOX-10 AND BCL-2 immunostaining by phosphatase alkaline technique (red chromogen).
A and B: immunostaining for C-MYC in primary HNMM, C: immunostaining for SOX-10 in primary HNMM, D: immunostaining for BCL-2 in primary HNMM (Magnification of 400X).

Figure 2: Total of positive and negative HNMM cases for BCL-2; C-MYC and SOX-10 protein analysis by immunohistochemistry.

Varying staining intensity and percentages of positive cells, but its weak expression was positive in half of melanoma metastases cases, showing perinuclear and cytoplasmatic pattern [23]. In China, the nuclear expression of SOX10 in Sinonasal Mucosal Melanoma was found in 100% of cases, and it is observed that the SOX10 staining pattern was stronger than S100 [26]. In 2014, a research group of MD Anderson Cancer Center found strong and diffuse positive nuclear staining in 100% of Fine-Needle Aspiration Smears from patients diagnosed with melanoma [33]. Not different to the literature, we found positive nuclear immunostaining in almost all studied cases, except one single primary neoplasm case.

In an immunohistochemical study analysing the BCL-2 expression in human melanocytes and melanocytic tumors, they observed strong cytoplasmatic immunoreactivity in scattered melanocytes in the basal cell layer, and it was positive for all normal skin and primary cutaneous malignant melanomas, although it was positive or weak positive in 3/5 subcutaneous
melanoma and weak positive in 3/6 of lymph node metastasis [27]. In other IHC study, they found strong and/or BCL-2 expression in 18/23 in primary melanoma and 8/9 metastatic melanoma [28]. In a study of expression of apoptosis inhibitor in human melanoma, BCL-2 expression was positive in 14/15 superficial spreading and nodular malignant melanoma and 12/15 metastatic melanoma [34]. In 2007, a group in Australia evaluated different types of melanocytic lesions: compound nevus; dysplastic nevus; melanoma ≤ 1.0mm; melanoma > 1.0mm; subcutaneous metastases and lymph node metastases by immunohistochemical expression of BCL-2 was expressed in: 100%; 100%; 100%; 90%; 63%; 35% respectively. They observed that reduction in the BCL-2 expression was evident in thick melanoma and in tumor with high dermal mitotic rates, suggesting that it was related to events associated with disease progression [35]. Another Brazilian group, they evaluated BCL-2 expression three types of cutaneous melanoma metastases by chi-square test and it was observed: lymph node (74,3%); subcutaneous (85,7%) and visceral (82,3%) among 50 patients [36]. In a head and neck mucosal melanoma study in 64 patients was found 75%; 75% and 69% for BCL-2 positive expression in: initial, recurrent and metastatic tumors. They suggested that BCL-2 in initial mucosal melanomas predicts better prognosis [37]. All results found in the literature are controversial to our results of 93% of BCL-2 positive expression, because all metastatic tumor were expressed.

According to ours results, we suggest that BCL-2 and SOX10, should be good adjunctive biomarkers for HNMM, however lower expression of C-MYC has not shown to play main role in the HNMM development, thus further molecular biology studies should corroborate this present study.

REFERENCES


[19] Treszl A, Adány R, Rákosy Z, Kardos L, Bégány A, Gilde K, Balázs M. Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas
A Study of C-MYC, SOX10 and BCL-2 Proteins Expression in Head


Received on 20-04-2016 Accepted on 11-07-2016 Published on 05-12-2016

DOI: http://dx.doi.org/10.6000/1929-2279.2016.05.04.1