Surface Modification of Natural Rubber by Sulfur hexafluoride (SF6) Plasma Treatment: A New Approach to Improve Mechanical and Hydrophobic Properties

Authors

  • F.C. Cabrera Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Química e Biologia, 19060-900,Presidente Prudente, SP
  • G. Dognani Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Química e Biologia, 19060-900,Presidente Prudente, SP
  • R.J. dos Santos Universidade Estadual Paulista (UNESP), Campus Experimental de Rosana, Primavera/Rosana, SP
  • D.L.S. Agostini Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Química e Biologia, 19060-900, Presidente Prudente, SP
  • N.C. Cruz Laboratório de Plasmas Tecnológicos, Universidade Estadual Paulista –Instituto de Ciência e Tecnologia de Sorocaba, Sorocaba, SP
  • A.E. Job Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Química e Biologia, 19060-900,Presidente Prudente, SP

DOI:

https://doi.org/10.6000/2369-3355.2016.03.03.3

Abstract

Plasma treatments have faced growing interest as important strategy to modify the hydrophobic/hydrophilic characteristics of materials. However, challenges related to the plasma modification of polymers are the improvement of the chemical resistance without decreasing the mechanical resistance. In this letter, we present for the first time a plasma treatment, using Sulfur hexafluoride (SF6), analogous to vulcanization process, of natural rubber surface, which resulted in a chemical and tension resistance improvements. The natural rubber membranes were coated with glow discharge plasmas generated in sulfur hexafluoride (SF6) atmospheres at a total pressure of 160 mTorr and applying 70 W of radiofrequency. Plasma treatment increases the contact angles from 64° to 125° i.e. leading to a hydrophobic surface. The tension at rupture increased from 3.7 to 6.1 MPa compared to natural rubber without plasma treatment demonstrated by stress-strain investigation. These results provide a fast alternative approach to improve mechanical and chemical properties of rubber-based products.

References

[1] Hosseini S, Ibrahim F, Djordjevic I, Koole LH. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014; 139: 2933-43.
https://doi.org/10.1039/c3an01789c
[2] Li X, Tian J, Nguyen T, Shen W. Paper-based microfluidic devices by plasma treatment. Anal Chem 2008; 80: 9131-4.
https://doi.org/10.1021/ac801729t
[3] Pabst O, Perelaer J, Beckert E, Schubert US, Eberhardt R, Tünnermann A. All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. Organic Electronics 2013; 14: 3423-9.
https://doi.org/10.1016/j.orgel.2013.09.009
[4] Pankaj SK, Bueno-Ferrer C, Misra NN, et al. Applications of cold plasma technology in food packaging. Trends in Food Science & Technology 2014; 35: 5-17.
https://doi.org/10.1016/j.tifs.2013.10.009

[5] Yoshida S, Hagiwara K, Hasebe T, Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surface & Coatings Technology 2013; 233: 99-107.
https://doi.org/10.1016/j.surfcoat.2013.02.042
[6] Agrawal NK, Agarwal R, Awasthi K, Vijay YK, Swami KC. Surface modification of nanocomposite polymer membranes by ion plasma irradiation for improving biocompatibility of polymer. Adv Mat Lett 2014; 5: 645-51.
https://doi.org/10.5185/amlett.2014.nib502
[7] Wang P, Tan KL, Ho CC, Khew MC, Kang ET. Surface modification of natural rubber latex films by graft copolymerization. European Polymer Journal 2000; 36: 1323-31.
https://doi.org/10.1016/S0014-3057(99)00193-7
[8] Sun Q, Yu H, Zeng Z, Lu G, Luo Y. Surface modification of natural rubber latex film by N-vinypyrrolidone graft copolymerization. Advanced Materials Research 2012; 393-395: 338-342.
https://doi.org/10.4028/www.scientific.net/AMR.393-395.338
[9] Anancharungsuk W, Tanpantree S, Sruanganurak A, Tangboriboonrat P. Surface modification of natural rubber film by UV-induced graft copolymerization with methyl methacrylate. Journal of Applied Polymer Science 2007; 104: 2270-6.
https://doi.org/10.1002/app.25661
[10] Schlögl S, Kramer R, Lenko D, et al. Fluorination of elastomer materials. European Polymer Journal 2011; 47: 2321-30.
https://doi.org/10.1016/j.eurpolymj.2011.09.010
[11] Tian H, Zhang L, Wu Q, Wang X, Chen Y. Creation of hydrophobic materials fabricated from soy protein and natural rubber: surface, interface and properties. Macromol Mater Eng 2010; 295: 451-9.
https://doi.org/10.1002/mame.200900366
[12] Sruanganurak A, Sanguansap K, Tangboriboonrat P. Layer-by-layer assembled nanoparticles: A novel method for surface modification of natural rubber latex film. Colloids and Surfaces A: Physicochem Eng Aspects 2006; 289: 110-7.
https://doi.org/10.1016/j.colsurfa.2006.04.014
[13] Atthi N, Nimittrakoolchai O, Jeamsaksiri W, Supothina S. Chemical resistant improvement of natural rubber and nitrile gloves by coating with hydrophobic film. Advanced Materials Research 2008; 55-57: 741-744.
https://doi.org/10.4028/www.scientific.net/AMR.55-57.741
[14] Yorsaeng S, Pornsunthorntawee O, Rujiravanit R. Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities. Plasma Chem Plasma Process 2012; 32: 1275-92.
https://doi.org/10.1007/s11090-012-9405-9
[15] Basak GC, Bandyopadhyay A, Neogi S, Bhowmick AK. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber. Applied Surface Science 2011; 257: 2891-904.
https://doi.org/10.1016/j.apsusc.2010.10.087
[16] Moreno-Couranjou M, Choquet P, Guillot J, Migeon H-N. Surface modification of natural vulcanized rubbers by atmospheric dielectric barrier discharges plasma treatments. Plasma Process Polym 2009; 6: S397-S400.
https://doi.org/10.1002/ppap.200930908
[17] Scherillo G, Lavorgna M, Buonocore GG, et al. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 2014; 6: 2230-4.
https://doi.org/10.1021/am405768m
[18] Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC. Environmental memory of polymer networks under stress. Adv Mater 2014; 26: 3441-4.
https://doi.org/10.1002/adma.201305698
[19] Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC. Solvent-sensitive reversible stress-response of shape memory natural rubber. Appl Mater Interfaces 2013; 5: 3504-7.
https://doi.org/10.1021/am400660f
[20] Lin T, Ma S, Lu Y, Guo B. New design of shape memory polymers based on natural rubber crosslinked via oxa-michael reaction. ACS Appl Mater Interfaces 2014; 6: 5695-703.
https://doi.org/10.1021/am500236w
[21] Cottinet P-J, Guyomar D, Galineau J, Sebald G. Electro-thermo-elastomers for artificial muscles. Sensors and Actuators A 2012; 180: 105-12.
https://doi.org/10.1016/j.sna.2012.04.016
[22] Cabrera FC, Souza JCP, Job AE, Crespilho FN. Natural-rubber-based flexible microfluidic device. RSC Advances 2014; 4: 35467-75.
https://doi.org/10.1039/C4RA07458K
[23] Cabrera FC, Melo AFAA, Souza JCP, Job AE, Crespilho FN. A flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles. Lab Chip 2015; 15: 1835-41.
https://doi.org/10.1039/C4LC01483A
[24] Lee B-J, Kusano Y, Kato N, Naito K. Oxygen plasma treatment of rubber surface by the atmospheric pressure cold plasma torch. Jpn J Appl Phys 1997; 36: 2888-91.
https://doi.org/10.1143/JJAP.36.2888
[25] Grythe KF, Hansen FK. Surface modification of EPDM rubber by plasma treatement. Langmuir 2006; 22: 6109-24.
https://doi.org/10.1021/la053471d
[26] Cabrera FC, Dognani G, Faita FL, et al. Vulcanization, centrifugation, water-washing, and polymeric covering processes to optimize natural rubber membranes applied to microfluidic devices. Journal of Materials Science 2016; 51: 3003-12.
https://doi.org/10.1007/s10853-015-9611-y
[27] The cure of elastomers by dicumyl peroxide as observed in differential scanning calorimetry. Thermochimica Acta 1980; 39: 7-20.
https://doi.org/10.1016/0040-6031(80)80052-9
[28] Loan LD, et al. Peroxide crosslinking reactions of polymers. Pure and Applied Chemistry 1972; 30: 173-80.
https://doi.org/10.1351/pac197230010173
[29] Jana GK, Das CK. Recycling natural rubber vulcanizates through mechanochemical devulcanization. Macromolecular Research 2005; 13: 30-8.
https://doi.org/10.1007/BF03219012

Downloads

Published

2016-12-21

How to Cite

Cabrera, F., Dognani, G., Santos, R. dos, Agostini, D., Cruz, N., & Job, A. (2016). Surface Modification of Natural Rubber by Sulfur hexafluoride (SF6) Plasma Treatment: A New Approach to Improve Mechanical and Hydrophobic Properties. Journal of Coating Science and Technology, 3(3), 116–120. https://doi.org/10.6000/2369-3355.2016.03.03.3

Issue

Section

Articles