Peculiarities of Electron-Beam Formation of Hydrophobic and Superhydrophobic Coatings Based on Hydrocarbons of Various Molecular Weights and PTFE

Authors

  • Qi Chen International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • A.V. Rogachev International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • M.A. Yarmolenko International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • A.A. Rogachev International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, College of Chemical Engineering, Nanjing University of Science and Technology
  • Xiaohong Jiang International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • D.L. Gorbache Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel 246019, Belarus

DOI:

https://doi.org/10.6000/2369-3355.2017.04.01.3

Keywords:

Electron-beam deposition, superhydrophobic coatings, paraffin, polytetrafluorethylene, molecular structure, nanocomposite coatings

Abstract

The paper studies the possibility of superhydrophobic coatings formations at exposure of powder mixture of polytetrafluorethylene and hydrocarbons having various molecular weights to low-energy electron beam in vacuum. It is shown that paraffin and PTFE based thin composite coatings may be characterized by superhydrophobic properties. The superhydrophobic properties are attained due to low surface energy of the fluorine-containing component and structured surface due to peculiarities of composite layer formation. The chemical processes observed in electron beam exposed area determine the molecular structure, morphology and the contact angle of thin organic coatings deposited. It is shown that high-molecular-weight hydrocarbon compounds should not be recommended for vacuum electron-beam deposition of superhydrophobic thin coatings because of deep changes in the molecular structure exposed to electron beam. These processes are responsible for high degree of unsaturation of the thin layer formed and for occurrence of oxygen-containing polar groups. The influence of substrate temperature on molecular structure, morphology and hydrophobic properties of thin coatings deposited is investigated. Potentially such coatings may be applied for deposition on the surface of metal capillaries used in biotechnological analyzers.

References

Guo Z, Liu W, Su B-L. Superhydrophobic surfaces: From natural to biomimetic to functional. J Colloid Interface Sci 2011; 353: 335-355. https://doi.org/10.1016/j.jcis.2010.08.047 DOI: https://doi.org/10.1016/j.jcis.2010.08.047

Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2011; 2: 152-161. https://doi.org/10.3762/bjnano.2.19 DOI: https://doi.org/10.3762/bjnano.2.19

Zhang P, Lv FY. Review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 2015; 82: 1068-1087. https://doi.org/10.1016/j.energy.2015.01.061 DOI: https://doi.org/10.1016/j.energy.2015.01.061

Lima AC, Mano JF. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine (Lond) 2015; 10: 271-297. https://doi.org/10.2217/nnm.14.175 DOI: https://doi.org/10.2217/nnm.14.175

Jeong H, Heo J, Son B, Choi D, Park TH, Chang M, Hong J. Intrinsic Hydrophobic Cairnlike Multilayer Films for Antibacterial Effect with Enhanced Durability. ACS Appl Mater Interfaces 2015; 7: 26117-26123. https://doi.org/10.1021/acsami.5b07613 DOI: https://doi.org/10.1021/acsami.5b07613

Cengiz U, Erbil HY. Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing anonsolvent. Appl Surf Sci 2014; 292: 591-597. https://doi.org/10.1016/j.apsusc.2013.12.013 DOI: https://doi.org/10.1016/j.apsusc.2013.12.013

Heinonen S, Huttunen-Saarivirta E, Nikkanen JP, Raulio M, Priha O, Laakso J, Storgards E, Levanena E. Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol–gel route. Colloids and Surfaces A: Physicochem Eng Aspects 2014; 453: 149-161. https://doi.org/10.1016/j.colsurfa.2014.04.037 DOI: https://doi.org/10.1016/j.colsurfa.2014.04.037

Taurino R, Fabbri E, Pospiech D, Synytska A, Messoria M. Preparation of scratch resistant superhydrophobic hybrid coatings by sol–gel process. Prog Org Coat 2014; 77: 1635-1641. https://doi.org/10.1016/j.porgcoat.2014.05.009 DOI: https://doi.org/10.1016/j.porgcoat.2014.05.009

Ovaskainen L, Chigome S, Birkin NA, Howdle SM, Torto N, Wagberg L, Turner C. Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic deposition (RESS-ED). J of Supercritical Fluids 2014; 95: 610-617. https://doi.org/10.1016/j.supflu.2014.09.014 DOI: https://doi.org/10.1016/j.supflu.2014.09.014

Jeong BY, Jung EH, Kim JH. Fabrication of superhydrophobic niobium pentoxide thin films by anodization. Appl Surf Sci 2014; 307: 28-32. https://doi.org/10.1016/j.apsusc.2014.03.111 DOI: https://doi.org/10.1016/j.apsusc.2014.03.111

Liang J, Liu K, Wang D, Li H, Li P, Li S, Su S, Xu S, Luo Y. Facile fabrication of super hydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination. Appl Surf Sci 2015; 38: 126-136. https://doi.org/10.1016/j.apsusc.2015.02.117 DOI: https://doi.org/10.1016/j.apsusc.2015.02.117

Rezaei S, Manoucheri I, Moradian R, Pourabbas B. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem Eng J 2014; 252: 11-16. https://doi.org/10.1016/j.cej.2014.04.100 DOI: https://doi.org/10.1016/j.cej.2014.04.100

Henry F, Renaux F, Coppee S, Lazzaroni R, Vandencasteele N, Reniers F, Snyders R. Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process. Surface Science 2012; 606: 1825-1829. https://doi.org/10.1016/j.susc.2012.07.025 DOI: https://doi.org/10.1016/j.susc.2012.07.025

Jafari R, Menini R, Farzaneh M. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl Surf Sci 2012; 259: 719-725.

Kim HK, Cho YS. Fabrication of a superhydrophobic surface via spraying withpolystyrene and multi-walled carbon nanotubes. Colloids Surf A: Physicochem Eng Asp 2015; 465: 77-86. https://doi.org/10.1016/j.colsurfa.2014.10.029 DOI: https://doi.org/10.1016/j.colsurfa.2014.10.029

Gong D, Long J, Fan P, Jiang D, Zhang H, Zhong M. Thermal stability of micro–nanostructures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via apicosecond laser ablated template. Appl Surf Sci 2015; 331: 437-443. https://doi.org/10.1016/j.apsusc.2015.01.102 DOI: https://doi.org/10.1016/j.apsusc.2015.01.102

Duan Z, Zhao Z, Luo D, Zhao M, Zhao G. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO2 films with patterned surface structure. Appl Surf Sci 2016; 360: 1030-1035. https://doi.org/10.1016/j.apsusc.2015.11.114 DOI: https://doi.org/10.1016/j.apsusc.2015.11.114

Li Z. Hierarchical ZnO films with microplate/nanohole structures induced by precursor concentration and colloidal templates, their superhydrophobicity, and enhanced photocatalytic performance. J Mater Res 2014; 29: 115-122. https://doi.org/10.1557/jmr.2013.182 DOI: https://doi.org/10.1557/jmr.2013.182

Ragachev AV, Yarmolenko MA, Rogachev AA, Gorbachev DL, Zhou B. Chemical composition morphology and optical properties of zinc sulfide coatings deposited by low-energy electron beam evaporation. Appl Surf Sci 2014; 303: 23-29. https://doi.org/10.1016/j.apsusc.2014.02.030 DOI: https://doi.org/10.1016/j.apsusc.2014.02.030

Rogachev АА, Yarmolenko MA, Rogachou АV, Tapalski DV, Liu X, Gorbachev DL. Morphology and structure of antibacterial nanocomposite organic-polymer and metal-polymer coatings deposited from active gas phase. RSC Adv 2013; 3: 11226-11233. https://doi.org/10.1039/c3ra23284k DOI: https://doi.org/10.1039/c3ra23284k

Liu Z, Zhou B, Rogachev AV, Yarmolenko MA. Growth feature of PTFE coatings on rubber substrate by low-energy electron beam dispersion. Polym Adv Technol 2016; 27: 823-829. https://doi.org/10.1002/pat.3723 DOI: https://doi.org/10.1002/pat.3723

Liu Z, Zhou B, Rogachev AV, Yarmolenko MA. Structure and tribological properties of Cu–PU–PTFE composite coatings prepared by low-energy electron beam dispersion with glow discharge. Polym Adv Technol 2016. https://doi.org/10.1002/pat.3821 DOI: https://doi.org/10.1002/pat.3821

Crystalline Olefin Polymers. Raff RAV, Doak KW, Eds. Published by Interscience Publishers, John Wiley 1965.

Dechant J, Danz R, Kimmer V, Schmolke R. Infra krasnaya spektroskopiya polimerov (Infrared Spectroscopy of Polymers). Moscow, 1976; p. 472. DOI: https://doi.org/10.1515/9783112481141

Gritsenko KP, Krasovsky AM. Thin-Film Deposition of Polymers by Vacuum Degradation. Chem Rev 2003; 103: 3607-3649. https://doi.org/10.1021/cr010449q DOI: https://doi.org/10.1021/cr010449q

Laguardia L, Ricci D, Vassallo E, Cremona A, Mesto E, Grezzi F, Dellera F. Deposition of Super-Hydrophobic and Oleophobic Fluorocarbon Films in Radio Frequency Glow Discharges. Macromol Symp 2007; 247: 295-302. https://doi.org/10.1002/masy.200750133 DOI: https://doi.org/10.1002/masy.200750133

Teodoru S, Kusano Y, Rozlosnik N, Michelsen PK. Continuous Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene (UHMW PE) Fibres for Adhesion Improvement. Plasma Process Polym 2009; 6: 375-381. https://doi.org/10.1002/ppap.200930906 DOI: https://doi.org/10.1002/ppap.200930906

Rubahn HG, et al. Interface Controlled Organic Thin Films, Book, Springer Proceedings in Physics, 2009; vol. 129.

Park SJ, Song SY, Shin JS, Rhee JM. Effect of surface oxyfluorination on the dyeability of polyethylene film. J Colloid Interface Sci 2005; 283: 190-195. https://doi.org/10.1016/j.jcis.2004.02.094 DOI: https://doi.org/10.1016/j.jcis.2004.02.094

Marcondes AR, Ueda M, Kostov KG, Beloto AF, Leite NF, Gomes GF, Lepienski CM. Improvements of Ultra-High Molecular Weight Polyethylene Mechanical Properties by Nitrogen Plasma Immersion Ion Implantation. Brazilian Journal of Physics 2004; 34: 1667-1672. https://doi.org/10.1590/S0103-97332004000800029 DOI: https://doi.org/10.1590/S0103-97332004000800029

Weckhuysen BM, Rosynek MP, Lunsford JH. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts. Catalysis Letters 1998; 52: 31-36. https://doi.org/10.1023/A:1019094630691 DOI: https://doi.org/10.1023/A:1019094630691

Van Deynse A, Cools P, Leys C, De Geyter N, Morent R. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate. Appl Surf Sci 2015; 328: 269-278. https://doi.org/10.1016/j.apsusc.2014.12.075 DOI: https://doi.org/10.1016/j.apsusc.2014.12.075

Turgeon S, Paynter RW. On determination of carbon sp2/sp3 ratios in polystyrene-polyethylene copolymers by photoelectron spectroscopy. Thin Solid Films 2004; 394: 44-48. DOI: https://doi.org/10.1016/S0040-6090(01)01134-8

Downloads

Published

2017-06-14

How to Cite

Chen, Q., Rogachev, A., Yarmolenko, M., Rogachev, A., Jiang, X., & Gorbache, D. (2017). Peculiarities of Electron-Beam Formation of Hydrophobic and Superhydrophobic Coatings Based on Hydrocarbons of Various Molecular Weights and PTFE. Journal of Coating Science and Technology, 4(1), 21–30. https://doi.org/10.6000/2369-3355.2017.04.01.3

Issue

Section

Articles