Determination of Thermal Barrier Coatings Layers Optimum Thickness via PSO-SA Hybrid Optimization Method with Respect to Thermal Stress

Ali Ghaseminezhad Koushali, M Nazari, Masoud Roudneshin

Abstract


Turbine entry temperature of turbo-engines has been increased to improve proficiency. Consequently, protecting the hot section elements experiencing aggressive service conditions necessitates the applying of thermal barrier coatings (TBC). Developing TBC systems and improving the performance is an ongoing endeavor to prolong the lifetime. Thus, various studies have been conducted to find the optimum properties and dimensions. In this paper, the optimum thickness of intermediate bond coat (BC) and top coat (TC) have been determined via a novel hybrid particle swarm and simulated annealing stochastic optimization method. The optimum thicknesses have been achieved under the constraint of thermal stress induced by thermal fatigue, creep, and oxidation in the TC while minimizing the weight during twenty cycles. The solutions for BC and TC thicknesses are respectively 50 μm and 450 μm. Plane stress condition has been adopted for theoretical and finite element stress analysis and the results are successfully compared.


Keywords


Thermal barrier coating; Thickness; Optimization; PSO-SA; Thermal stress

References


F. Cernuschi, L. Lorenzoni, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements, Journal of the European Ceramic Society, Vol. 25, No. 4, pp. 393-400, 2005.

J. D. Osorio, A. Toro, J. P. Hernandez-Ortiz, Thermal barrier coatings for gas turbine applications: failure mechanisms and key microstructural features, Dyna, Vol. 79, No. 176, pp. 149-158, 2012.

J. G. Lim, S. Seo, J. M. Koo, C. S. Seok, J. B. Choi, M. K. Kim, Parametric study for optimal design of an air plasma sprayed thermal barrier coating system with respect to thermal stress, Surface and Coatings Technology, Vol. 315, pp. 105-111, 2017.

A. G. Koushali, M. Sameezadeh, M. Vaseghi, P. Safarpour, Analytical and numerical investigations of the crack behavior in thermal barrier coatings under the trip thermal load, Surface and Coatings Technology, Vol. 337, pp. 90-96, 2018.

A. G. Koushali, M. Sameezadeh, M. Vaseghi, P. Safarpour, Modeling and simulation of thermal fatigue crack in EB-PVD TBCs under non-uniform temperature, Ceramics International, Vol. 43, No. 16, pp. 13140-13145, 2017.

V. Kumar, K. Balasubramanian, Progress update on failure mechanisms of advanced thermal barrier coatings: A review, Progress in Organic Coatings, Vol. 90, pp. 54-82, 2016.

R. Naraparaju, M. Hüttermann, U. Schulz, P. Mechnich, Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings, Journal of the European Ceramic Society, Vol. 37, No. 1, pp. 261-270, 2017.

B. Lv, X. Fan, D. Li, T. Wang, Towards enhanced sintering resistance: Air-plasma-sprayed thermal barrier coating system with porosity gradient, Journal of the European Ceramic Society, 2017.

Y. Ozgurluk, K. M. Doleker, A. C. Karaoglanli, Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt, Applied Surface Science, 2017.

B. Li, X. Fan, D. Li, P. Jiang, Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis, Mathematical Problems in Engineering, Vol. 2017, 2017.

H. Abedi, M. Salehi, A. Shafyei, Microstructural, Mechanical and Thermal Shock Properties of Triple-layer TBCs with Different Thicknesses of Bond Coat and Ceramic Top Coat Deposited onto Polyimide Matrix Composite, Ceramics International, 2018.

X. Fang, G. Zhang, X. Feng, Performance of TBCs system due to the different thicknesses of top ceramic layer, Ceramics International, Vol. 41, No. 2, pp. 2840-2846, 2015.

F. Javidrad, M. Nazari, A new hybrid particle swarm and simulated annealing stochastic optimization method, Applied Soft Computing, Vol. 60, pp. 634-654, 2017.

M. Ali, S. Nusier, G. Newaz, Creep effects on early damage initiation in a TBC system, Journal of materials science, Vol. 39, No. 10, pp. 3383-3390, 2004.

R. B. Hetnarski, M. R. Eslami, G. Gladwell, Thermal stresses: advanced theory and applications: Springer, 2009.

S. Asghari, M. Salimi, Finite element simulation of thermal barrier coating performance under thermal cycling, Surface and Coatings Technology, Vol. 205, No. 7, pp. 2042-2050, 2010.

H. Xu, H. Guo, Thermal barrier coatings: Elsevier, 2011.

C. H. Liebert, R. E. Gaugler, The significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes, Thin Solid Films, Vol. 73, No. 2, pp. 471-475, 1980.

F. Javidrad, M. Nazari, H. Javidrad, Optimum stacking sequence design of laminates using a hybrid PSO-SA method, Composite Structures, 2017.

H. Dong, G.-J. Yang, H.-N. Cai, H. Ding, C.-X. Li, C.-J. Li, The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings, Ceramics International, Vol. 41, No. 9, pp. 11046-11056, 2015.

W. Mao, Y. Zhou, L. Yang, X. Yu, Modeling of residual stresses variation with thermal cycling in thermal barrier coatings, Mechanics of materials, Vol. 38, No. 12, pp. 1118-1127, 2006.

E. P. Busso, Z. Qian, M. Taylor, H. Evans, The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems, Acta Materialia, Vol. 57, No. 8, pp. 2349-2361, 2009.

M. Bäker, Finite element simulation of interface cracks in thermal barrier coatings, Computational Materials Science, Vol. 64, pp. 79-83, 2012.

M. Ranjbar-Far, J. Absi, G. Mariaux, D. Smith, Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies, Materials & Design, Vol. 32, No. 10, pp. 4961-4969, 2011.

J. Rösler, M. Bäker, K. Aufzug, A parametric study of the stress state of thermal barrier coatings: Part I: creep relaxation, Acta Materialia, Vol. 52, No. 16, pp. 4809-4817, 2004.

S. Bose, High temperature coatings: Butterworth-Heinemann, 2011.

S. Norouzi, M. Nazari, M. V. Farahani, A Novel Hybrid Particle Swarm Optimization-Simulated Annealing Approach for CO2-Oil Minimum Miscibility Pressure (MMP) Prediction, in Proceeding of in Proceeding of 81st EAGE Conference and Exhibition, 2019..

Z. Xue, A. Evans, J. Hutchinson, Delamination Susceptibility of coatings under high thermal flux, Journal of Applied Mechanics, Vol. 76, No. 4, pp. 041008, 2009.

F. Shao, H. Zhao, X. Zhong, Y. Zhuang, Z. Cheng, L. Wang, S. Tao, Characteristics of thick columnar YSZ coatings fabricated by plasma spray-physical vapor deposition, Journal of the European Ceramic Society, 2017.

R. Ma, X. Cheng, W. Ye, SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray, Applied Surface Science, Vol. 357, pp. 407-412, 2015.

L. Wang, D. Li, J. Yang, F. Shao, X. Zhong, H. Zhao, K. Yang, S. Tao, Y. Wang, Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review, Journal of the European Ceramic Society, Vol. 36, No. 6, pp. 1313-1331, 2016.

N. Fleck, A. Cocks, S. Lampenscherf, Thermal shock resistance of air plasma sprayed thermal barrier coatings, Journal of the European Ceramic Society, Vol. 34, No. 11, pp. 2687-2694, 2014.

X. Zhao, X. Wang, P. Xiao, Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment, Surface and Coatings Technology, Vol. 200, No. 20, pp. 5946-5955, 2006.


Refbacks

  • There are currently no refbacks.


ISSN: 2369-3355