Review on the Use of Nanofillers in Polyurethane Coating Systems for Different Coating Applications

Authors

  • Gauri P. Deshmukh Department of Polymer and Surface Engineering and Technology, Institute of Chemical Technology, Mumbai, India
  • Prakash A. Mahanwar Department of Polymer and Surface Engineering and Technology, Institute of Chemical Technology, Mumbai, India

DOI:

https://doi.org/10.6000/2369-3355.2019.06.01.3

Keywords:

Polyurethane (PU), Coating, Nano filler, Carbon nanotube, carbon nanofiber, Mechanism.

Abstract

Polyurethane (PU) is the most common, versatile and researched material in the world. It is widely used in many applications such as medical, automotive and industrial fields. It can be found in products such as furniture, coatings, adhesives, construction materials, Paints, elastomers, insulators, elastic fibres, foams, integral skins, etc. because it has extraordinary properties and the facility to tailor-made various formulations according to property requirement using different raw materials which are available. Though the material is having fascinating properties the material is also associated with various problems such as inferior coating properties. Inorganic pigments and fillers are dispersed in organic components and binders to improve different properties of the coating. This paper is intended to review the various nanofillers used in different PU coating systems. It gives a general introduction about the various fillers and it's classification, Mechanism by which the filler enhances the mechanical properties of the materials, various factors which affect the properties of the coatings. Various methods of incorporation of fillers in the coating systems are discussed. Various nanofillers such as SiO2(Silicon Dioxide), TiO2(Titanium Dioxide), AL2O3(Aluminium Oxide), antimony doped tin oxide (ATO), BaSO4(Barium Sulphate), FE2O3(Ferric Oxide) as well as carbon nanotubes, graphene derived fillers and nano-diamonds are discussed in detail. The importance and effect of surface modification of fillers to enhance coating properties are also discussed along with challenges associated with polyurethane coatings and future trends.

References

Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate Int J Biol Macromol 2014; 66: 26-32. https://doi.org/10.1016/j.ijbiomac.2014.01.073 DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.073

Król P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 2007; 52: 915-1015. https://doi.org/10.1016/j.pmatsci.2006.11.001 DOI: https://doi.org/10.1016/j.pmatsci.2006.11.001

Sharmin E, Zafar F. Polyurethane: An Introduction, in: Intech 2012; pp. 3-16. https://doi.org/10.5772/51663 DOI: https://doi.org/10.5772/51663

Howard GT. Biodegradation of polyurethane: A review. Int Biodeterior. Biodegrad 2002; 49: 245-252. https://doi.org/10.1016/S0964-8305(02)00051-3 DOI: https://doi.org/10.1016/S0964-8305(02)00051-3

Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications-a review. RSC Adv 2016; 6: 114453-114482. https://doi.org/10.1039/C6RA14525F DOI: https://doi.org/10.1039/C6RA14525F

Jiang L, Wu J, Nedolisa C, Saiani A, Assender HE. Phase Separation and Crystallization in High Hard Block Content Polyurethane Thin Films. Macromolecules 2015; 48: 5358-5366. https://doi.org/10.1021/acs.macromol.5b01083 DOI: https://doi.org/10.1021/acs.macromol.5b01083

Gama NV, Ferreira A, Barros-Timmons A. Polyurethane foams: Past, present, and future. Materials (Basel) 2018; 11: 1-35. https://doi.org/10.3390/ma11101841 DOI: https://doi.org/10.3390/ma11101841

Sangeetha NJ, Malar Retna A, Jasmala Joy Y, Sophia A. A review on advanced methods of polyurethane synthesis based on natural resources. J Chem Pharm Sci 2014; 7: 242-249.

Mishra JK, Kim I, Ha CS. New millable polyurethane/organoclay nanocomposite: Preparation, characterization and properties. Macromol Rapid Commun 2003; 24: 671-675. https://doi.org/10.1002/marc.200350008 DOI: https://doi.org/10.1002/marc.200350008

Fernando RH. Nanocomposite and Nanostructured Coatings : Recent Advancements. in: Nanotechnol Appl Coatings ACS Symp Ser, Washington, DC, 2009; pp. 2-21. https://doi.org/10.1021/bk-2009-1008.ch001 DOI: https://doi.org/10.1021/bk-2009-1008.ch001

Rahman MM, Hasneen A, Chung I, Kim H, Lee WK, Chun JH. Synthesis and properties of polyurethane coatings: The effect of different types of soft segments and their ratios. Compos Interfaces 2013; 20: 15-26. https://doi.org/10.1080/15685543.2013.762890 DOI: https://doi.org/10.1080/15685543.2013.762890

Nozaki S, Masuda S, Kamitani K, Kojio K, Takahara A, Kuwamura G, Hasegawa D, Moorthi K, Mita K, Yamasaki S. Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure. Macromolecules 2017. https://doi.org/10.1021/acs.macromol.6b02044 DOI: https://doi.org/10.1021/acs.macromol.6b02044

Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 2007; 32: 352-418. https://doi.org/10.1016/j.progpolymsci.2006.05.003 DOI: https://doi.org/10.1016/j.progpolymsci.2006.05.003

Barick AK. Micro- and Nanomechanics of PU Polymer-Based Composites and Nanocomposites, in: Polyurethane Polym Compos Nanocomposites, Elsevier Inc., 2017; pp. 21-71. https://doi.org/10.1016/B978-0-12-804065-2.00002-4 DOI: https://doi.org/10.1016/B978-0-12-804065-2.00002-4

Gacitua W, Ballerini A, Zhang J. Polymer Nanocomposites: Synthetic and Natural Fillers a Review. Maderas Cienc y Tecnol 2005; 7: 159-178. https://doi.org/10.4067/S0718-221X2005000300002 DOI: https://doi.org/10.4067/S0718-221X2005000300002

Zumbrunnen DA. Applied Plastics Engineering Handbook. in: Appl Plast Eng Handb, Elsevier Inc., 2011; pp. 401-415. https://doi.org/10.1016/B978-1-4377-3514-7.10022-4 DOI: https://doi.org/10.1016/B978-1-4377-3514-7.10022-4

Civancik-Uslu D, Ferrer L, Puig R, Fullana-i-Palmer P. Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Sci Total Environ 2018; 626: 927-940. https://doi.org/10.1016/j.scitotenv.2018.01.149 DOI: https://doi.org/10.1016/j.scitotenv.2018.01.149

Xanthos M, ed., 1. Polymers and Polymer Composites. in: Funct Fill Plast, WILEY-VCH Verlag GmbH & Co KGaA, 2005; pp. 1-16.

Nunes RCR, Fonseca JLC, Pereira MR. Polymer-filler interactions and mechanical properties of a polyurethane elastomer. Polym Test 2000; 19: 93-103. https://doi.org/10.1016/S0142-9418(98)00075-0 DOI: https://doi.org/10.1016/S0142-9418(98)00075-0

Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer (Guildf) 2007; 48: 6855-6866. https://doi.org/10.1016/j.polymer.2007.09.020 DOI: https://doi.org/10.1016/j.polymer.2007.09.020

Saleem M, Tanveer F, Ahmad A, Gilani SA. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity. J Appl Polym Sci 2008; 107: 483-485.

AS, Thomas NL. Talc as a Nucleating Agent and Reinforcing Filler in Poly(lactic acid) Composites. Polym Eng Sci 2014; 70: 64-70. https://doi.org/10.1002/pen.23543 DOI: https://doi.org/10.1002/pen.23543

Liu X, Wang T, Chow LC, Yang M, Mitchell JW. Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid). Int J Polym Sci 2014; 2014: 1-8. https://doi.org/10.1155/2014/827028 DOI: https://doi.org/10.1155/2014/827028

Mirabedini SM, Kiamanesh A. The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog Org Coatings 2013; 76: 1625-1632. https://doi.org/10.1016/j.porgcoat.2013.07.009 DOI: https://doi.org/10.1016/j.porgcoat.2013.07.009

Ali ES, Ahmad S. Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay. Compos Part B Eng 2012; 43: 2813-2816. https://doi.org/10.1016/j.compositesb.2012.04.043 DOI: https://doi.org/10.1016/j.compositesb.2012.04.043

Pukánszky B. Interfaces and interphases in multicomponent materials: Past, present, future. Eur Polym J 2005; 41: 645-662. https://doi.org/10.1016/j.eurpolymj.2004.10.035 DOI: https://doi.org/10.1016/j.eurpolymj.2004.10.035

Benli S, Yilmazer U, Pekel F, Ozkar S. Effect of fillers on thermal and mechanical properties of polyurethane elastomer. J Appl Polym Sci 1998; 68: 1057-1065. https://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1057::AID-APP3>3.0.CO;2-E DOI: https://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1057::AID-APP3>3.0.CO;2-E

Piazza D, Lorandi NP, Pasqual CI, Scienza LC, Zattera AJ. Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating. Mater Sci Eng A 2011; 528: 6769-6775. https://doi.org/10.1016/j.msea.2011.05.062 DOI: https://doi.org/10.1016/j.msea.2011.05.062

Akbari B, Bagheri R. Deformation mechanism of epoxy/clay nanocomposite. Eur Polym J 2007; 43: 782-788. https://doi.org/10.1016/j.eurpolymj.2006.11.028 DOI: https://doi.org/10.1016/j.eurpolymj.2006.11.028

Dong Y, Chaudhary D, Ploumis C, Lau KT. Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Compos Part A Appl Sci Manuf 2011; 42: 1483-1492. https://doi.org/10.1016/j.compositesa.2011.06.015 DOI: https://doi.org/10.1016/j.compositesa.2011.06.015

Youssef TE, Al-Turaif H, Wazzan AA. Investigations on the Structural and Mechanical Properties of Polyurethane Resins Based on Cu(II)phthalocyanines. Int J Polym Sci 2015; 2015: 1-10. https://doi.org/10.1155/2015/461390 DOI: https://doi.org/10.1155/2015/461390

Madhup MK, Shah NK, Parekh NR. An Investigation of Abrasion Resistance Property of Clay- Epoxy Nanocomposite Coating. Mater Sci Res India 2018; 15: 165-178. https://doi.org/10.13005/msri/150209 DOI: https://doi.org/10.13005/msri/150209

Relosi N, Neuwald OA, Zattera AJ, Piazza D, Kunst SR. Effect of addition of clay minerals on the properties of epoxy / polyester powder coatings. Polimeros 2018; 5169: 355-367. https://doi.org/10.1590/0104-1428.01616 DOI: https://doi.org/10.1590/0104-1428.01616

Wang Z, Han E, Ke W. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf Coatings Technol 2006; 200: 5706-5716. https://doi.org/10.1016/j.surfcoat.2005.08.102 DOI: https://doi.org/10.1016/j.surfcoat.2005.08.102

Berta M, Lindsay C, Pans G, Camino G. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stab 2006; 91: 1179-1191. https://doi.org/10.1016/j.polymdegradstab.2005.05.027 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.05.027

Bakare IO, Okieimen FE, Pavithran C, Abdul Khalil HPS, Brahmakumar M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des 2010; 31: 4274-4280. https://doi.org/10.1016/j.matdes.2010.04.013 DOI: https://doi.org/10.1016/j.matdes.2010.04.013

Oliveira M, Machado AV. Preparation of Polymer Based Nanocomposites By Different Routes, in: 2012; pp. 1-22.

Nguyen-Tri P, Nguyen TA, Carriere P, Ngo Xuan C. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications. Int J Corros 2018; 2018: 1-19. https://doi.org/10.1155/2018/4749501 DOI: https://doi.org/10.1155/2018/4749501

Xia Y, Larock RC. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process. Macromol Rapid Commun 2011; 32: 1331-1337. https://doi.org/10.1002/marc.201100203 DOI: https://doi.org/10.1002/marc.201100203

Chen Y, Zhou S, Yang H, Wu L. Structure and properties of polyurethane/nanosilica composites. J Appl Polym Sci 2005; 95: 1032-1039. https://doi.org/10.1002/app.21180 DOI: https://doi.org/10.1002/app.21180

Zhu Y, Sun DX. Preparation of silicon dioxide/polyurethane nanocomposites by a sol-gel process. J Appl Polym Sci 2004; 92: 2013-2016. https://doi.org/10.1002/app.20067 DOI: https://doi.org/10.1002/app.20067

Jeon HT, Jang MK, Kim BK, Kim KH. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process. Colloids Surfaces A Physicochem Eng Asp 2007; 302: 559-567. https://doi.org/10.1016/j.colsurfa.2007.03.043 DOI: https://doi.org/10.1016/j.colsurfa.2007.03.043

Lai SM, Wang CK, Shen HF. Properties and preparation of thermoplastic polyurethane/silica hybrid using sol-gel process. J Appl Polym Sci 2005; 97: 1316-1325. https://doi.org/10.1002/app.21833 DOI: https://doi.org/10.1002/app.21833

Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R, Farzaneh K, Mohseni M, Ghanbari H. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 2016; 69: 1248-1255. https://doi.org/10.1016/j.msec.2016.08.037 DOI: https://doi.org/10.1016/j.msec.2016.08.037

Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH. Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol-gel method. Surf Coatings Technol 2012; 206: 4778-4784. https://doi.org/10.1016/j.surfcoat.2012.03.077 DOI: https://doi.org/10.1016/j.surfcoat.2012.03.077

Lin J, Wu X, Zheng C, Zhang P, Huang B, Guo N, Jin L. Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route. Appl Surf Sci 2014; 303: 67-75. https://doi.org/10.1016/j.apsusc.2014.02.075 DOI: https://doi.org/10.1016/j.apsusc.2014.02.075

Kuan HC, Su HY, Ma CCM. Synthesis and characterization of polysilicic acid nanoparticles/ waterborne polyurethane nanocomposite. J Mater Sci 2005; 40: 6063-6070. https://doi.org/10.1007/s10853-005-1302-7 DOI: https://doi.org/10.1007/s10853-005-1302-7

Lee YR, Raghu AV, Jeong HM, Kim BK. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 2009; 210: 1247-1254. https://doi.org/10.1002/macp.200900157 DOI: https://doi.org/10.1002/macp.200900157

Chen X, Wu L, Zhou S, You B. In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites. Polym Int 2003; 52: 993-998. https://doi.org/10.1002/pi.1176 DOI: https://doi.org/10.1002/pi.1176

Da Silva VD, Dos Santos LM, Subda SM, Ligabue R, Seferin M, Carone CLP, Einloft S. Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 2013; 70: 1819-1833. https://doi.org/10.1007/s00289-013-0927-y DOI: https://doi.org/10.1007/s00289-013-0927-y

Chen JJ, Zhu CF, Deng HT, Qin ZN, Bai YQ. Preparation and characterization of the waterborne polyurethane modified with nanosilica. J Polym Res 2009; 16: 375-380. https://doi.org/10.1007/s10965-008-9238-7 DOI: https://doi.org/10.1007/s10965-008-9238-7

Zhou S, Wu L, Sun J, Shen W. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coatings 2002; 45: 33-42. https://doi.org/10.1016/S0300-9440(02)00085-1 DOI: https://doi.org/10.1016/S0300-9440(02)00085-1

Chen Y, Zhou S, Yang H, Gu G, Wu L. Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 2004; 279: 370-378. https://doi.org/10.1016/j.jcis.2004.06.074 DOI: https://doi.org/10.1016/j.jcis.2004.06.074

Yeh JM, Yao CT, Hsieh CF, Lin LH, Chen PL, Wu JC, Yang HC, Wu CP. Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings. Eur Polym J 2008; 44: 3046-3056. https://doi.org/10.1016/j.eurpolymj.2008.05.037 DOI: https://doi.org/10.1016/j.eurpolymj.2008.05.037

Heidarian M, Shishesaz MR, Kassiriha SM, Nematollahi M. Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog Org Coatings 2010; 68: 180-188. https://doi.org/10.1016/j.porgcoat.2010.02.006 DOI: https://doi.org/10.1016/j.porgcoat.2010.02.006

Arianpouya N, Shishesaz M, Arianpouya M, Nematollahi M. Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing. Surf Coatings Technol 2013; 216: 199-206. https://doi.org/10.1016/j.surfcoat.2012.11.036 DOI: https://doi.org/10.1016/j.surfcoat.2012.11.036

Bayer IS, Steele A, Martorana PJ, Loth E. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions. Appl Surf Sci 2010; 257: 823-826. https://doi.org/10.1016/j.apsusc.2010.07.072 DOI: https://doi.org/10.1016/j.apsusc.2010.07.072

Tang Y, Yang J, Yin L, Chen B, Tang H, Liu C, Li C. Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance. Colloids Surfaces A Physicochem Eng Asp 2014; 459: 261-266. https://doi.org/10.1016/j.colsurfa.2014.07.018 DOI: https://doi.org/10.1016/j.colsurfa.2014.07.018

Jiang C, Zhang Y, Wang Q, Wang T. Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence. J Appl Polym Sci 2013; 129: 2959-2965. https://doi.org/10.1002/app.39024 DOI: https://doi.org/10.1002/app.39024

Duquesne S, Le Bras M, Bourbigot S, Delobel R, Vezin H, Camino G, Eling B, Lindsay C, Roels T. Expandable graphite: A fire retardant additive for polyurethane coatings. Fire Mater 2003; 27: 103-117. https://doi.org/10.1002/fam.812 DOI: https://doi.org/10.1002/fam.812

Bouchemal K, Briançon S, Perrier E, Fessi H, Bonnet I, Zydowicz N. Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm 2004; 269: 89-100. https://doi.org/10.1016/j.ijpharm.2003.09.025 DOI: https://doi.org/10.1016/j.ijpharm.2003.09.025

Solarski S, Benali S, Rochery M, Devaux E, Alexandre M, Monteverde F, Dubois P. Synthesis of a polyurethane/clay nanocomposite used as coating: Interactions between the counterions of clay and the isocyanate and incidence on the nanocomposite structure. J Appl Polym Sci 2005; 95: 238-244. https://doi.org/10.1002/app.21254 DOI: https://doi.org/10.1002/app.21254

Mirabedini SM, Khodabakhshi K. Nanocomposites of PU Polymers Filled With Spherical Fillers. in: Polyurethane Polym Compos Nanocomposites, Elsevier Inc., 2017; pp. 135-172. https://doi.org/10.1016/B978-0-12-804065-2.00004-8 DOI: https://doi.org/10.1016/B978-0-12-804065-2.00004-8

Kaddami H, Gerard JF, Hajji P, Pascault JP. Silica-filled poly(HEMA) from hema/grafted SiO2 nanoparticles: polymerization kinetics and rheological changes. J Appl Polym Sci 1999; 73: 2701-2713. https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13<2701::AID-APP18>3.0.CO;2-F DOI: https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13<2701::AID-APP18>3.0.CO;2-F

Hajji P, David L, Gerard JF, Pascault JP, Vigier G. Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci Part B Polym Phys 1999; 37: 3172-3187. https://doi.org/10.1002/(SICI)1099-0488(19991115)37:22<3172::AID-POLB2>3.0.CO;2-R DOI: https://doi.org/10.1002/(SICI)1099-0488(19991115)37:22<3172::AID-POLB2>3.0.CO;2-R

Chang TC, Wang YT, Hong YS, Chiu YS. Organic - Inorganic Hybrid Materials . V . Dynamics and Degradation of Poly (methyl methacrylate) Silica Hybrids. J Polym Sci Part A Polym Chem 2000; 38: 1972-1980. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11<1972::AID-POLA60>3.0.CO;2-5 DOI: https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11<1972::AID-POLA60>3.0.CO;2-5

Dolatzadeh MMJF, Moradian S. Effect of Nano Silica on Moisture Absorption of Polyurethane Clear Coats as Studied by EIS and Gravimetric Methods. Prog Color Color Coatings 2011; 3: 92-100.

Chee CY, Yaacob II. Weathering Effect on PE Coated with Thin Layer of PU/Nanosilica Composite. Adv Mater Res 2011; 181-182: 697-701. https://doi.org/10.4028/www.scientific.net/AMR.181-182.697 DOI: https://doi.org/10.4028/www.scientific.net/AMR.181-182.697

Ching YC, Yaacob I. Effect of polyurethane/nanosilica composite coating on thermomechanical properties of polyethylene film. Mater Technol 2012; 27: 113-115. https://doi.org/10.1179/175355511X13240279340246 DOI: https://doi.org/10.1179/175355511X13240279340246

Bull SJ, Chalker PR, Johnston C, Moore V. The effect of roughness on the friction and wear of diamond thin films. Surf Coatings Technol 1994; 68-69: 603-610. https://doi.org/10.1016/0257-8972(94)90224-0 DOI: https://doi.org/10.1016/0257-8972(94)90224-0

Ching YC, Syamimie N. Effect of nanosilica filled polyurethane composite coating on polypropylene substrate. J Nanomater 2013; 2013: 1-8. https://doi.org/10.1155/2013/567908 DOI: https://doi.org/10.1155/2013/567908

Rabea AM, Mohseni M, Mirabedini SM, Tabatabaei MH. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Appl Surf Sci 2012; 258: 4391-4396. https://doi.org/10.1016/j.apsusc.2011.12.123 DOI: https://doi.org/10.1016/j.apsusc.2011.12.123

Fan W, Du W, Li Z, Dan N, Huang J. Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Prog Org Coatings 2015; 86: 125-133. https://doi.org/10.1016/j.porgcoat.2015.04.022 DOI: https://doi.org/10.1016/j.porgcoat.2015.04.022

HW, Cundong Wang HY. Preparation and application of biomimetic superhydrophobic silica and polyurethane composite coating. Int J Surf Sci Eng 2015; 9: 510-519. https://doi.org/10.1504/IJSURFSE.2015.072832 DOI: https://doi.org/10.1504/IJSURFSE.2015.072832

He X, Sanders S, Aker WG, Lin Y, Douglas J, Hwang HM. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2nanoparticles in vitro. J Environ Sci (China) 2016; 42: 50-60. https://doi.org/10.1016/j.jes.2015.05.028 DOI: https://doi.org/10.1016/j.jes.2015.05.028

Hu Zhou BS, Chen Y, Fan H, Shi H, Luo Z. Key, Water Vapor Permeability of the Polyurethane/TiO2 Nanohybrid Membrane with Temperature Sensitivity. J Appl Polym Sci 2008; 109: 3002-3007. https://doi.org/10.1002/app.28427 DOI: https://doi.org/10.1002/app.28427

Mirabedini SM, Sabzi M, Zohuriaan-Mehr J, Atai M, Behzadnasab M. Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Appl Surf Sci 2011; 257: 4196-4203. https://doi.org/10.1016/j.apsusc.2010.12.020 DOI: https://doi.org/10.1016/j.apsusc.2010.12.020

Sadu RB, Chen DH, Kucknoor AS, Guo Z, Gomes AJ. Silver-Doped TiO2/Polyurethane Nanocomposites for Antibacterial Textile Coating. Bionanoscience 2014; 4: 136-148. https://doi.org/10.1007/s12668-014-0125-x

RDN, Carreon MA, Li S, Falconer JL. Alumina-Supported SAPO-34 Membranes for CO2/CH4 Separation. J Am Chem 2008; 130: 5412-5413. https://doi.org/10.1021/ja801294f DOI: https://doi.org/10.1021/ja801294f

Tena A, Fernández L, Sánchez M, Palacio L, Lozano AE, Hernández A, Prádanos P. Mixed matrix membranes of 6FDA-6FpDA with surface functionalized γ-alumina particles. An analysis of the improvement of permselectivity for several gas pairs. Chem Eng Sci 2010; 65: 2227-2235. https://doi.org/10.1016/j.ces.2009.12.023 DOI: https://doi.org/10.1016/j.ces.2009.12.023

Saleh TA, Gupta VK. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol 2012; 89: 245-251. https://doi.org/10.1016/j.seppur.2012.01.039 DOI: https://doi.org/10.1016/j.seppur.2012.01.039

RHF. Sung L-P, Comer J, Forster AM, Hu H, Floryancic B, Brickweg L. Scratch Behavior of Nano-alumina/Polyurethane Coatings. J Coatings Technol Res 2008; 1-22. https://doi.org/10.1007/s11998-008-9110-z DOI: https://doi.org/10.1007/s11998-008-9110-z

Floryancic BR, Brickweg LJ, Fernando RH. Effects of alumina and silica nanoparticles on automotive clear-coat properties. ACS Symp Ser 2009; 1002: 220-235. https://doi.org/10.1021/bk-2009-1002.ch011 DOI: https://doi.org/10.1021/bk-2009-1002.ch011

Song HJ, Zhang ZZ, Hu Men X. Effect of nano-Al2O3surface treatment on the tribological performance of phenolic composite coating. Surf Coatings Technol 2006; 201: 3767-3774. https://doi.org/10.1016/j.surfcoat.2006.09.084 DOI: https://doi.org/10.1016/j.surfcoat.2006.09.084

Dhoke SK, Rajgopalan N, Khanna AS. Effect of Nanoalumina on the Electrochemical and Mechanical Properties of Waterborne

Polyurethane Composite Coatings. J Nanoparticles 2013; 2013: 11-13. https://doi.org/10.1155/2013/527432 DOI: https://doi.org/10.1155/2013/527432

Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 2009; 189: 426-432. https://doi.org/10.1016/j.powtec.2008.07.004 DOI: https://doi.org/10.1016/j.powtec.2008.07.004

Yu D, Cai R, Liu Z. Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochim Acta - Part A Mol Biomol Spectrosc 2004; 60: 1617-1624. https://doi.org/10.1016/j.saa.2003.09.003 DOI: https://doi.org/10.1016/j.saa.2003.09.003

Lowry MS, Hubble DR, Wressell AL, Vratsanos MS, Pepe FR, Hegedus CR. Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation. J Coatings Technol Res 2008; 5: 233-239. https://doi.org/10.1007/s11998-007-9064-6 DOI: https://doi.org/10.1007/s11998-007-9064-6

Kathalewar M, Sabnis A, Waghoo G. Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings. Prog Org Coatings 2013; 76: 1215-1229. https://doi.org/10.1016/j.porgcoat.2013.03.027 DOI: https://doi.org/10.1016/j.porgcoat.2013.03.027

Terrier C, Chatelon JP, Roger JA. Electrical and optical properties of Sb:SnO2thin films obtained by the sol-gel method. Thin Solid Films 1997; 295: 95-100. https://doi.org/10.1016/S0040-6090(96)09324-8 DOI: https://doi.org/10.1016/S0040-6090(96)09324-8

Russo D, McKown C, Roger C, Brotzman JS. The influence of film composition on the optical and thermal properties of solar control coatings. Thin Solid Films 2001; 398: 65-70. https://doi.org/10.1016/S0040-6090(01)01304-9 DOI: https://doi.org/10.1016/S0040-6090(01)01304-9

Abe K, Sanada Y, Morimoto T. Anti-reflective coatings for CRTs by sol-gel process. J Sol-Gel Sci Technol 2003; 26: 709-713. https://doi.org/10.1023/A:1020737902758 DOI: https://doi.org/10.1023/A:1020737902758

Sung S, Kim DS. UV-curing and mechanical properties of polyester-acrylate nanocomposites films with silane-modified antimony doped tin oxide nanoparticles. J Appl Polym Sci 2013; 129: 1340-1344. https://doi.org/10.1002/app.38824 DOI: https://doi.org/10.1002/app.38824

Kieffer R, Mangin D, Puel F, Charcosset C. Precipitation of barium sulphate in a hollow fiber membrane contactor, Part I: Investigation of particulate fouling. Chem Eng Sci 2009; 64: 1759-1767. https://doi.org/10.1016/j.ces.2009.01.011 DOI: https://doi.org/10.1016/j.ces.2009.01.011

Chen Q, Shen X. Formation of mesoporous BaSO4microspheres with a larger pore size via ostwald ripening at room temperature. Cryst Growth Des 2010; 10: 3838-3842. https://doi.org/10.1021/cg100307r DOI: https://doi.org/10.1021/cg100307r

Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B. Surface modification of Fe2O3nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3nanocomposites. Appl Surf Sci 2014; 320: 60-72. https://doi.org/10.1016/j.apsusc.2014.09.026 DOI: https://doi.org/10.1016/j.apsusc.2014.09.026

Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B. A study on the corrosion inhibition properties of silane-modified Fe2O3 nanopar-ticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J Coatings Technol Res 2015; 12: 277-292. https://doi.org/10.1007/s11998-014-9631-6 DOI: https://doi.org/10.1007/s11998-014-9631-6

Breuer O, Sundararaj U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym Compos 2004; 25: 630-645. https://doi.org/10.1002/pc.20058 DOI: https://doi.org/10.1002/pc.20058

Chen S, Wang Q, Wang T. Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des 2012; 38: 47-52. https://doi.org/10.1016/j.matdes.2012.02.003 DOI: https://doi.org/10.1016/j.matdes.2012.02.003

Blond D, Barron V, Ruether M, Ryan KP, Nicolosi V, Blau WJ, Coleman JN. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes. Adv Funct Mater 2006; 16: 1608-1614. https://doi.org/10.1002/adfm.200500855 DOI: https://doi.org/10.1002/adfm.200500855

Sattar R, Kausar A, Siddiq M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. J Plast Film Sheeting 2015; 31: 186-224. https://doi.org/10.1177/8756087914535126 DOI: https://doi.org/10.1177/8756087914535126

Wang T, Chen S, Wang Q, Pei X. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater Des 2010; 31: 3810-3815. https://doi.org/10.1016/j.matdes.2010.03.029 DOI: https://doi.org/10.1016/j.matdes.2010.03.029

Li Y, Yang Z, Qiu H, Dai Y, Zheng Q, Li J, Yang J. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J Mater Chem A 2014; 2: 14139-14145. https://doi.org/10.1039/C4TA02262A DOI: https://doi.org/10.1039/C4TA02262A

Bin Yu YH, Wang X, Xing W, Yang H, Song L. UV-Curable Functionalized Graphene Oxide/Polyurethane Acrylate Nanocomposite Coatings with Enhanced thermal stability and mechanical properties. Ind Eng Chem Res 2012; 51: 14629-14636. https://doi.org/10.1021/ie3013852 DOI: https://doi.org/10.1021/ie3013852

Xiang C, Cox PJ, Kukovecz A, Genorio B, Hashim DP, Yan Z, Peng Z, Hwang CC, Ruan G, Samuel ELG, Sudeep PM, Konya Z, Vajtai R, Ajayan PM, Tour JM. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. ACS Nano 2013; 7: 10380-10386. https://doi.org/10.1021/nn404843n DOI: https://doi.org/10.1021/nn404843n

Zhang Z, Zhang W, Li D, Sun Y, Wang Z, Hou C. Mechanical and Anticorrosive Properties of Graphene / Epoxy Resin Composites Coating Prepared by in-Situ Method. Int J Mol Sci 2015; 16: 2239-2251. https://doi.org/10.3390/ijms16012239 DOI: https://doi.org/10.3390/ijms16012239

Gerasin VA, Antipov EM, Karbushev VV, Kulichikhin VG, Karpacheva GP, Talroze RV, Kudryavtsev YV. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russ Chem Rev 2013; 82: 303-332. https://doi.org/10.1070/RC2013v082n04ABEH004322 DOI: https://doi.org/10.1070/RC2013v082n04ABEH004322

Voznyakovskii AP, Ginzburg BM, Rashidov D, Tochil’nikov DG, Tuichiev S. Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym Sci Ser A 2010; 52: 1044-1050. https://doi.org/10.1134/S0965545X10100068 DOI: https://doi.org/10.1134/S0965545X10100068

Pallay J, Kelemen P, Berghmans H, Van Dommelen D. Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng 2000; 275: 8-17. https://doi.org/10.1002/(SICI)1439-2054(20000201)275:1<8::AID-MAME8>3.0.CO;2-6 DOI: https://doi.org/10.1002/(SICI)1439-2054(20000201)275:1<8::AID-MAME8>3.0.CO;2-6

Montemor MF. Surface & Coatings Technology Functional and smart coatings for corrosion protection : A review of recent advances. Surf Coat Technol 2014; 258: 17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031 DOI: https://doi.org/10.1016/j.surfcoat.2014.06.031

Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coatings 2009; 65: 22-228. https://doi.org/10.1016/j.porgcoat.2008.11.006 DOI: https://doi.org/10.1016/j.porgcoat.2008.11.006

Hetzer M, De Kee D. Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: A review. Chem Eng Res Des 2008; 86: 1083-1093. https://doi.org/10.1016/j.cherd.2008.05.003 DOI: https://doi.org/10.1016/j.cherd.2008.05.003

Zulfiqar S, Kausar A, Rizwan M, Sarwar MI. Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Appl Surf Sci 2008; 255: 2080-2086. https://doi.org/10.1016/j.apsusc.2008.06.184 DOI: https://doi.org/10.1016/j.apsusc.2008.06.184

Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363: 1-24. https://doi.org/10.1016/j.jcis.2011.07.017 DOI: https://doi.org/10.1016/j.jcis.2011.07.017

Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer (Guildf) 2008; 49: 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017 DOI: https://doi.org/10.1016/j.polymer.2008.04.017

Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci 2008; 33: 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008 DOI: https://doi.org/10.1016/j.progpolymsci.2008.07.008

de Paiva LB, Morales AR, Valenzuela Díaz FR. Organoclays: Properties, preparation and applications. Appl Clay Sci 2008; 42: 8-24. https://doi.org/10.1016/j.clay.2008.02.006 DOI: https://doi.org/10.1016/j.clay.2008.02.006

Allauddin S, Narayan R, Raju KVSN. Synthesis and properties of alkoxysilane castor oil and their polyurethane/urea-silica hybrid coating films. ACS Sustain Chem Eng 2013; 1: 910-918. https://doi.org/10.1021/sc3001756 DOI: https://doi.org/10.1021/sc3001756

Ireni NG, Karuppaiah M, Narayan R, Raju KVSN, Basak P. TiO2/Poly(thiourethane-urethane)-urea nanocomposites: Anticorrosion materials with NIR-reflectivity and high refractive index. Polymer (Guildf) 2017; 119: 142-151. https://doi.org/10.1016/j.polymer.2017.05.004 DOI: https://doi.org/10.1016/j.polymer.2017.05.004

Mo M, Zhao W, Chen Z, Yu Q, Zeng Z, Wu X, Xue Q. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv 2015; 5: 56486-56497. https://doi.org/10.1039/C5RA10494G DOI: https://doi.org/10.1039/C5RA10494G

Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Mohamadzadeh Moghadam MH. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon NY 2015; 93: 555-573. https://doi.org/10.1016/j.carbon.2015.05.094 DOI: https://doi.org/10.1016/j.carbon.2015.05.094

Fabrication and evaluation of Rb2Co(H2P2O7)2$2H2O/waterborne polyurethane nanocomposite coating for corrosion protection aspects. RSC Adv 2017; 7: 55074-55080. https://doi.org/10.1039/C7RA11212B DOI: https://doi.org/10.1039/C7RA11212B

Öner M, Çöl AA, Pochat-Bohatier C, Bechelany M. Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly(3-hydroxybutyrate-: Co -hydroxyvalerate). RSC Adv 2016; 6: 90973-90981. https://doi.org/10.1039/C6RA19198C DOI: https://doi.org/10.1039/C6RA19198C

Wei H, Ding D, Guo Z. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J Mater Chem A 2013; 10805-10813. https://doi.org/10.1039/c3ta11966a DOI: https://doi.org/10.1039/c3ta11966a

GJL, YKL, Chen-Yang YW, Yang HC. Thermal and anticorrosive properties of polyurethane/clay nanocomposites. J Polym Res 2004; 11: 275-283. https://doi.org/10.1007/s10965-005-3982-8 DOI: https://doi.org/10.1007/s10965-005-3982-8

Chen-Yang YW, Lee YK, Chen YT, Wu JC. High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process. Polymer (Guildf) 2007; 48: 2969-2979. https://doi.org/10.1016/j.polymer.2007.03.024 DOI: https://doi.org/10.1016/j.polymer.2007.03.024

Wu W, Guijt RM, Silina YE, Manz A, Manuscript A. Corrosion inhibition of functional graphene reinforced polyurethane nanocomposite. RSC Adv 2013; 6: 22469-22475. https://doi.org/10.1039/C5RA25890A DOI: https://doi.org/10.1039/C5RA25890A

Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011; 7: 1876-1902. https://doi.org/10.1002/smll.201002009 DOI: https://doi.org/10.1002/smll.201002009

Molina J, Fernández J, Del Río AI, Bonastre J, Cases F. Chemical and electrochemical study of fabrics coated with reduced graphene oxide. Appl Surf Sci 2013; 279: 46-54. https://doi.org/10.1016/j.apsusc.2013.04.020 DOI: https://doi.org/10.1016/j.apsusc.2013.04.020

Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 2002; 26: 149-154. https://doi.org/10.1002/fam.792 DOI: https://doi.org/10.1002/fam.792

Sadu RB, Chen DH, Kucknoor AS, Guo Z, Gomes AJ. Silver-Doped TiO 2 / Polyurethane Nanocomposites for Antibacterial Textile Coating. Bionanoscience 2014; 4: 136-148. https://doi.org/10.1007/s12668-014-0125-x DOI: https://doi.org/10.1007/s12668-014-0125-x

Mondal S, Hu JL. A Novel Approach to Excellent UV Protecting Cotton Fabric with Functionalized MWNT Containing Water Vapor Permeable PU Coating. J Appl Polym Scienece 2006; 103: 3370-3376. https://doi.org/10.1002/app.25437 DOI: https://doi.org/10.1002/app.25437

Pant HR, Pokharel P, Joshi MK, Adhikari S, Kim HJ, Park CH, Kim CS. Processing and characterization of electrospun graphene oxide/polyurethane composite nanofibers for stent coating. Chem Eng J 2015; 270: 336-342. https://doi.org/10.1016/j.cej.2015.01.105 DOI: https://doi.org/10.1016/j.cej.2015.01.105

Abdal-hay A, Agour M, Kim Y-K, Lee M-H, Hassan MK, Abu El-Ainin H, Salam Hamdy A, Ivanovski S. Magnesium-particle/Polyurethane Composite Layer Coating on Titanium Surfaces for Orthopedic Applications. Eur Polym J 2018; 1-45. https://doi.org/10.1016/j.eurpolymj.2018.10.012 DOI: https://doi.org/10.1016/j.eurpolymj.2018.10.012

Hsu S, Tseng H, Lin Y. Biomaterials The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010; 31: 6796-6808. https://doi.org/10.1016/j.biomaterials.2010.05.015 DOI: https://doi.org/10.1016/j.biomaterials.2010.05.015

Nguyen TNL, Do TV, Nguyen TV, Dao PH, Trinh VT, Mac VP, Nguyen AH, Dinh DA, Nguyen TA, Vo TKA, Tran DL, Le TL. Antimicrobial activity of acrylic polyurethane/Fe 3 O 4 -Ag nanocomposite coating. Prog Org Coatings 2019; 132: 15-20. https://doi.org/10.1016/j.porgcoat.2019.02.023 DOI: https://doi.org/10.1016/j.porgcoat.2019.02.023

Ngo TD, Le TMH, Nguyen TH, Nguyen TV, Nguyen TA, Le TL, Nguyen TT, Van Tran TT, Le TBT, Doan NH. Antibacterial

Nanocomposites Based on Fe 3 O 4 -Ag Hybrid Nanoparticles and Natural Rubber-Polyethylene Blends. Int J Polym Sci 2016; 2016: 1-9. https://doi.org/10.1155/2016/7478161 DOI: https://doi.org/10.1155/2016/7478161

Nguyen Tri P, Nguyen TA, Nguyen TH, Carriere P. Antibacterial Behavior of Hybrid Nanoparticles. in: Noble Met Oxide Hybrid Nanoparticles 2019; pp. 141-155. https://doi.org/10.1016/B978-0-12-814134-2.00007-3 DOI: https://doi.org/10.1016/B978-0-12-814134-2.00007-3

Sharmin E, Zafar F, Akram D, Ahmad S. Plant oil polyol nanocomposite for antibacterial polyurethane coating. Prog Org Coatings 2013; 76: 541-547. https://doi.org/10.1016/j.porgcoat.2012.10.027 DOI: https://doi.org/10.1016/j.porgcoat.2012.10.027

Akbarian M, Olya ME, Ataeefard M, Mahdavian M. The influence of nanosilver on thermal and antibacterial properties of a 2 K waterborne polyurethane coating. Prog Org Coatings 2012; 75: 344-348. https://doi.org/10.1016/j.porgcoat.2012.07.017 DOI: https://doi.org/10.1016/j.porgcoat.2012.07.017

Ma X, Zhang W. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 2009; 94: 1103-1109. https://doi.org/10.1016/j.polymdegradstab.2009.03.024 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.03.024

Zvekić D, Srdić VV, Karaman MA, Matavulj MN. Antimicrobial properties of ZnO nanoparticles incorporated in polyurethane varnish. Process Appl Ceram 2011; 5: 41-45. https://doi.org/10.2298/PAC1101041Z DOI: https://doi.org/10.2298/PAC1101041Z

Sow C, Riedl B, Blanchet P. UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment. J Coatings Technol Res 2011; 8: 211-221. https://doi.org/10.1007/s11998-010-9298-6 DOI: https://doi.org/10.1007/s11998-010-9298-6

Cheng D, Wen Y, An X, Zhu X, Ni Y. TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 2016. https://doi.org/10.1016/j.carbpol.2016.05.083 DOI: https://doi.org/10.1016/j.carbpol.2016.05.083

Gupta KK, Abbas SM, Abhyankar AC. Carbon black / polyurethane nanocom- posite-coated fabric for microwave attenuation in frequency range. J Ind Text 2015; 1-20.

Bhattacharyya A, Joshi M. Functional properties of microwave ‐ absorbent nanocomposite coatings based on thermoplastic polyurethane ‐ based and hybrid carbon ‐ based nano fillers. Polym Adv Technol 2012; 23: 975-983. https://doi.org/10.1002/pat.2000 DOI: https://doi.org/10.1002/pat.2000

Zhao W, Li M, Peng H. Functionalized MWNT-Doped Thermoplastic Polyurethane Nanocomposites for Aerospace Coating Applications a. Macromol Mater Eng 2010; 295: 838-845. https://doi.org/10.1002/mame.201000080 DOI: https://doi.org/10.1002/mame.201000080

Kausar A. Polyurethane nanocomposite coatings: state of the art and perspectives. Polym Int 2018; 67: 1470-1477. https://doi.org/10.1002/pi.5616 DOI: https://doi.org/10.1002/pi.5616

Calvo ME, Castro Smirnov JR, Míguez H. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. J Polym Sci Part B Polym Phys 2012; 50: 945-956. https://doi.org/10.1002/polb.23087 DOI: https://doi.org/10.1002/polb.23087

Kuang P, Lee J-Hg, Kim C-H, Ho K-M, Constant K. Improved Surface Wettability of Polyurethane Films by Ultraviolet Ozone Treatment. J Appl Polym Sci 2010; 118: 3024-3033. https://doi.org/10.1002/app.32712 DOI: https://doi.org/10.1002/app.32712

Downloads

Published

2019-11-15

How to Cite

Deshmukh, G. P., & Mahanwar, P. A. (2019). Review on the Use of Nanofillers in Polyurethane Coating Systems for Different Coating Applications. Journal of Coating Science and Technology, 6(1), 22–35. https://doi.org/10.6000/2369-3355.2019.06.01.3

Issue

Section

Articles