Inducing Visuomotor Adaptation Using Virtual Reality Gaming with a Virtual Shift as a Treatment for Unilateral Spatial Neglect

Authors

  • A.R. Carter Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
  • M.H. Foreman Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
  • C. Martin Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
  • S. Fitterer Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
  • A. Pioppo Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
  • L.T. Connor Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
  • J.R. Engsberg Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA

DOI:

https://doi.org/10.6000/2292-2598.2016.04.03.4

Keywords:

Sensorimotor learning, plasticity, stroke, spatial attention, engagement.

Abstract

Unilateral spatial neglect after stroke is characterized by reduced responses to stimuli on the contralesional side, causing significant impairments in self-care and safety. Conventional visuomotor adaptation (VMA) with prisms that cause a lateral shift of the visual scene can decrease neglect symptoms but is not engaging according to patients. Performing VMA within a virtual reality (VR) environment may be more engaging but has never been tested. To determine if VMA can be elicited in a VR environment, healthy subjects (n=7) underwent VMA that was elicited by either wearing prisms that caused an optical shift, or by application of a virtual shift of the hand cursor within the VR environment. A low cost VR system was developed by coupling the Kinect v2 gaming sensor to online games via the Flexible Action and Articulated Skeleton Toolkit (FAAST) software. The adaptation phase of training consisted of a reaching task in online games or in a custom target pointing program. Following the adaptation phase the optical or virtual shift was removed and participants were assessed during the initial portion of the de-adaptation phase for the presence of an after-effect on their reaching movements, with lateral reaching errors indicating the successful induction of VMA. Results show that practicing reaching in a VR environment with a virtual shift lead to a horizontal after-effect similar to conventional prism adaptation. The results demonstrate that VMA can be elicited in a VR environment and suggest that VR gaming therapy could be used to improve recovery from unilateral spatial neglect.

References

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 2013; 127(1): e6-e245.

Buxbaum LJ, Ferraro MK, Veramonti T, Farne A, Whyte J, Ladavas E, et al. Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology 2004; 62(5): 749-56. http://dx.doi.org/10.1212/01.WNL.0000113730.73031.F4 DOI: https://doi.org/10.1212/01.WNL.0000113730.73031.F4

Buxbaum LJ, Dawson AM, Linsley D. Reliability and validity of the Virtual Reality Lateralized Attention Test in assessing hemispatial neglect in right-hemisphere stroke. Neuropsychology 2012; 26(4): 430-41. http://dx.doi.org/10.1037/a0028674 DOI: https://doi.org/10.1037/a0028674

Li K, Malhotra PA. Spatial neglect. Practical neurology 2015; 15(5): 333-9. http://dx.doi.org/10.1136/practneurol-2015-001115 DOI: https://doi.org/10.1136/practneurol-2015-001115

Heilman KM, Van Den Abell T. Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 1980; 30(3): 327-30. http://dx.doi.org/10.1212/WNL.30.3.327 DOI: https://doi.org/10.1212/WNL.30.3.327

Mesulam MM. A cortical network for directed attention and unilateral neglect. Annals of neurology 1981; 10(4): 309-25. http://dx.doi.org/10.1002/ana.410100402 DOI: https://doi.org/10.1002/ana.410100402

Sapir A, Kaplan JB, He BJ, Corbetta M. Anatomical correlates of directional hypokinesia in patients with hemispatial neglect. The Journal of neuroscience: the official journal of the Society for Neuroscience 2007; 27(15): 4045-51. http://dx.doi.org/10.1523/JNEUROSCI.0041-07.2007 DOI: https://doi.org/10.1523/JNEUROSCI.0041-07.2007

Paolucci S, Antonucci G, Grasso MG, Pizzamiglio L. The role of unilateral spatial neglect in rehabilitation of right brain-damaged ischemic stroke patients: a matched comparison. Archives of physical medicine and rehabilitation 2001; 82(6): 743-9. http://dx.doi.org/10.1053/apmr.2001.23191 DOI: https://doi.org/10.1053/apmr.2001.23191

Beis JM, Keller C, Morin N, Bartolomeo P, Bernati T, Chokron S, et al. Right spatial neglect after left hemisphere stroke: qualitative and quantitative study. Neurology 2004; 63(9): 1600-5. http://dx.doi.org/10.1212/01.WNL.0000142967.60579.32 DOI: https://doi.org/10.1212/01.WNL.0000142967.60579.32

Blini E, Romeo Z, Spironelli C, Pitteri M, Meneghello F, Bonato M, et al. Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients. Neuropsychologia 2016. DOI: https://doi.org/10.1016/j.neuropsychologia.2016.02.028

Chen P, Hreha K, Kong Y, Barrett AM. Impact of spatial neglect on stroke rehabilitation: evidence from the setting of an inpatient rehabilitation facility. Archives of physical medicine and rehabilitation 2015; 96(8): 1458-66. http://dx.doi.org/10.1016/j.apmr.2015.03.019 DOI: https://doi.org/10.1016/j.apmr.2015.03.019

Zoccolotti P, Antonucci G, Judica A, Montenero P, Pizzamiglio L, Razzano C. Incidence and evolution of the hemineglect disorder in chronic patients with unilateral right brain damage. The International journal of neuroscience 1989; 47(3-4): 209-16. http://dx.doi.org/10.3109/00207458908987435 DOI: https://doi.org/10.3109/00207458908987435

Lunven M, Thiebaut De Schotten M, Bourlon C, Duret C, Migliaccio R, Rode G, et al. White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain: a journal of neurology 2015; 138(Pt 3): 746-60. DOI: https://doi.org/10.1093/brain/awu389

Oh-Park M, Hung C, Chen P, Barrett AM. Severity of spatial neglect during acute inpatient rehabilitation predicts community mobility after stroke. PM & R: the journal of injury, function, and rehabilitation 2014; 6(8): 716-22. http://dx.doi.org/10.1016/j.pmrj.2014.01.002 DOI: https://doi.org/10.1016/j.pmrj.2014.01.002

Di Monaco M, Schintu S, Dotta M, Barba S, Tappero R, Gindri P. Severity of unilateral spatial neglect is an independent predictor of functional outcome after acute inpatient rehabilitation in individuals with right hemispheric stroke. Archives of physical medicine and rehabilitation 2011; 92(8): 1250-6. http://dx.doi.org/10.1016/j.apmr.2011.03.018 DOI: https://doi.org/10.1016/j.apmr.2011.03.018

Lisa LP, Jughters A, Kerckhofs E. The effectiveness of different treatment modalities for the rehabilitation of unilateral neglect in stroke patients: a systematic review. NeuroRehabilitation 2013; 33(4): 611-20. DOI: https://doi.org/10.3233/NRE-130986

Corbetta M. Hemispatial neglect: clinic, pathogenesis, and treatment. Seminars in neurology 2014; 34(5): 514-23. http://dx.doi.org/10.1055/s-0034-1396005 DOI: https://doi.org/10.1055/s-0034-1396005

Klinke ME, Hafsteinsdottir TB, Hjaltason H, Jonsdottir H. Ward-based interventions for patients with hemispatial neglect in stroke rehabilitation: a systematic literature review. International journal of nursing studies 2015; 52(8): 1375-403. http://dx.doi.org/10.1016/j.ijnurstu.2015.04.004 DOI: https://doi.org/10.1016/j.ijnurstu.2015.04.004

Machner B, Dorr M, Sprenger A, von der Gablentz J, Heide W, Barth E, et al. Impact of dynamic bottom-up features and top-down control on the visual exploration of moving real-world scenes in hemispatial neglect. Neuropsychologia 2012; 50(10): 2415-25. http://dx.doi.org/10.1016/j.neuropsychologia.2012.06.012 DOI: https://doi.org/10.1016/j.neuropsychologia.2012.06.012

Luaute J, Halligan P, Rode G, Rossetti Y, Boisson D. Visuo-spatial neglect: a systematic review of current interventions and their effectiveness. Neuroscience and Biobehavioral Reviews 2006; 30(7): 961-82. http://dx.doi.org/10.1016/j.neubiorev.2006.03.001 DOI: https://doi.org/10.1016/j.neubiorev.2006.03.001

Luaute J, Halligan P, Rode G, Jacquin-Courtois S, Boisson D. Prism adaptation first among equals in alleviating left neglect: a review. Restorative Neurology and Neuroscience 2006; 24(4-6): 409-18.

Henriques DY, Cressman EK. Visuomotor adaptation and proprioceptive recalibration. Journal of motor behavior 2012; 44(6): 435-44. http://dx.doi.org/10.1080/00222895.2012.659232 DOI: https://doi.org/10.1080/00222895.2012.659232

Krakauer JW. Motor learning and consolidation: the case of visuomotor rotation. Advances in experimental medicine and biology 2009; 629: 405-21. http://dx.doi.org/10.1007/978-0-387-77064-2_21 DOI: https://doi.org/10.1007/978-0-387-77064-2_21

Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Current opinion in neurobiology 2011; 21(4): 636-44. http://dx.doi.org/10.1016/j.conb.2011.06.012 DOI: https://doi.org/10.1016/j.conb.2011.06.012

von Helmholtz H. Handbuch der physiologischen Optik. 1867; 1.

Fernandez-Ruiz J, Diaz R. Prism adaptation and aftereffect: specifying the properties of a procedural memory system. Learning & memory (Cold Spring Harbor, NY) 1999; 6(1): 47-53. DOI: https://doi.org/10.1101/lm.6.1.47

Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain: a journal of neurology 1996; 119 ( Pt 4): 1183-98. DOI: https://doi.org/10.1093/brain/119.4.1183

Held R, Freedman SJ. Plasticity in human sensorimotor control. Science 1963; 142(3591): 455-62. http://dx.doi.org/10.1126/science.142.3591.455 DOI: https://doi.org/10.1126/science.142.3591.455

Fernandez-Ruiz J, Hall C, Vergara P, Diiaz R. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Brain research Cognitive brain research 2000; 9(3): 223-6. http://dx.doi.org/10.1016/S0926-6410(99)00057-9 DOI: https://doi.org/10.1016/S0926-6410(99)00057-9

Schintu S, Pisella L, Jacobs S, Salemme R, Reilly KT, Farne A. Prism adaptation in the healthy brain: The shift in line bisection judgments is long lasting and fluctuates. Neuropsychologia 2014; 53: 165-70. http://dx.doi.org/10.1016/j.neuropsychologia.2013.11.013 DOI: https://doi.org/10.1016/j.neuropsychologia.2013.11.013

Savin DN, Morton SM. Asymmetric generalization between the arm and leg following prism-induced visuomotor adaptation. Experimental brain research 2008; 186(1): 175-82. http://dx.doi.org/10.1007/s00221-007-1220-9 DOI: https://doi.org/10.1007/s00221-007-1220-9

Morton SM, Bastian AJ. Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of neurophysiology 2004; 92(4): 2497-509. http://dx.doi.org/10.1152/jn.00129.2004 DOI: https://doi.org/10.1152/jn.00129.2004

Alexander MS, Flodin BW, Marigold DS. Prism adaptation and generalization during visually guided locomotor tasks. Journal of neurophysiology 2011; 106(2): 860-71. http://dx.doi.org/10.1152/jn.01040.2010 DOI: https://doi.org/10.1152/jn.01040.2010

Michel C, Vernet P, Courtine G, Ballay Y, Pozzo T. Asymmetrical after-effects of prism adaptation during goal oriented locomotion. Experimental brain research 2008; 185(2): 259-68. http://dx.doi.org/10.1007/s00221-007-1152-4 DOI: https://doi.org/10.1007/s00221-007-1152-4

Colent C, Pisella L, Bernieri C, Rode G, Rossetti Y. Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? Neuroreport 2000; 11(9): 1899-902. http://dx.doi.org/10.1097/00001756-200006260-00019 DOI: https://doi.org/10.1097/00001756-200006260-00019

Loftus AM, Nicholls ME, Mattingley JB, Bradshaw JL. Left to right: representational biases for numbers and the effect of visuomotor adaptation. Cognition 2008; 107(3): 1048-58. http://dx.doi.org/10.1016/j.cognition.2007.09.007 DOI: https://doi.org/10.1016/j.cognition.2007.09.007

Nicholls ME, Kamer A, Loftus AM. Pseudoneglect for mental alphabet lines is affected by prismatic adaptation. Experimental brain research 2008; 191(1): 109-15. http://dx.doi.org/10.1007/s00221-008-1502-x DOI: https://doi.org/10.1007/s00221-008-1502-x

Bultitude JH, Van der Stigchel S, Nijboer TC. Prism adaptation alters spatial remapping in healthy individuals: evidence from double-step saccades. Cortex; a journal devoted to the study of the nervous system and behavior 2013; 49(3): 759-70. http://dx.doi.org/10.1016/j.cortex.2012.01.008 DOI: https://doi.org/10.1016/j.cortex.2012.01.008

Bultitude JH, Woods JM. Adaptation to leftward-shifting prisms reduces the global processing bias of healthy individuals. Neuropsychologia 2010; 48(6): 1750-6. http://dx.doi.org/10.1016/j.neuropsychologia.2010.02.024 DOI: https://doi.org/10.1016/j.neuropsychologia.2010.02.024

Reed SA, Dassonville P. Adaptation to leftward-shifting prisms enhances local processing in healthy individuals. Neuropsychologia 2014; 56: 418-27. http://dx.doi.org/10.1016/j.neuropsychologia.2014.02.012 DOI: https://doi.org/10.1016/j.neuropsychologia.2014.02.012

Striemer C, Sablatnig J, Danckert J. Differential influences of prism adaptation on reflexive and voluntary covert attention. Journal of the International Neuropsychological Society: JINS 2006; 12(3): 337-49. http://dx.doi.org/10.1017/S1355617706060553 DOI: https://doi.org/10.1017/S1355617706060553

Goedert KM, Leblanc A, Tsai SW, Barrett AM. Asymmetrical effects of adaptation to left- and right-shifting prisms depends on pre-existing attentional biases. Journal of the International Neuropsychological Society: JINS 2010; 16(5): 795-804. http://dx.doi.org/10.1017/S1355617710000597 DOI: https://doi.org/10.1017/S1355617710000597

Jacquin-Courtois S, O'Shea J, Luaute J, Pisella L, Revol P, Mizuno K, et al. Rehabilitation of spatial neglect by prism adaptation: a peculiar expansion of sensorimotor after-effects to spatial cognition. Neuroscience and biobehavioral reviews 2013; 37(4): 594-609. http://dx.doi.org/10.1016/j.neubiorev.2013.02.007 DOI: https://doi.org/10.1016/j.neubiorev.2013.02.007

Michel C. Beyond the Sensorimotor Plasticity: Cognitive Expansion of Prism Adaptation in Healthy Individuals. Frontiers in psychology 2015; 6: 1979. DOI: https://doi.org/10.3389/fpsyg.2015.01979

Rossi PW, Kheyfets S, Reding MJ. Fresnel prisms improve visual perception in stroke patients with homonymous hemianopia or unilateral visual neglect. Neurology 1990; 40(10): 1597-9. http://dx.doi.org/10.1212/WNL.40.10.1597 DOI: https://doi.org/10.1212/WNL.40.10.1597

Rossetti Y, Rode G, Pisella L, Farne A, Li L, Boisson D, et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 1998; 395(6698): 166-9. http://dx.doi.org/10.1038/25988 DOI: https://doi.org/10.1038/25988

Frassinetti F, Angeli V, Meneghello F, Avanzi S, Ladavas E. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain: a journal of neurology 2002; 125(Pt 3): 608-23. DOI: https://doi.org/10.1093/brain/awf056

Shiraishi H, Yamakawa Y, Itou A, Muraki T, Asada T. Long-term effects of prism adaptation on chronic neglect after stroke. NeuroRehabilitation 2008; 23(2): 137-51. DOI: https://doi.org/10.3233/NRE-2008-23203

Serino A, Barbiani M, Rinaldesi ML, Ladavas E. Effectiveness of prism adaptation in neglect rehabilitation: a controlled trial study. Stroke; a journal of cerebral circulation 2009; 40(4): 1392-8. http://dx.doi.org/10.1161/STROKEAHA.108.530485 DOI: https://doi.org/10.1161/STROKEAHA.108.530485

Fortis P, Maravita A, Gallucci M, Ronchi R, Grassi E, Senna I, et al. Rehabilitating patients with left spatial neglect by prism exposure during a visuomotor activity. Neuropsychology 2010; 24(6): 681-97. http://dx.doi.org/10.1037/a0019476 DOI: https://doi.org/10.1037/a0019476

Mizuno K, Tsuji T, Takebayashi T, Fujiwara T, Hase K, Liu M. Prism adaptation therapy enhances rehabilitation of stroke patients with unilateral spatial neglect: a randomized, controlled trial. Neurorehabilitation and neural repair 2011; 25(8): 711-20. http://dx.doi.org/10.1177/1545968311407516 DOI: https://doi.org/10.1177/1545968311407516

Humphreys GW, Watelet A, Riddoch MJ. Long-term effects of prism adaptation in chronic visual neglect: A single case study. Cognitive neuropsychology 2006; 23(3): 463-78. http://dx.doi.org/10.1080/02643290500202755 DOI: https://doi.org/10.1080/02643290500202755

McIntosh RD, Rossetti Y, Milner AD. Prism adaptation improves chronic visual and haptic neglect: a single case study. Cortex; a journal devoted to the study of the nervous system and behavior 2002; 38(3): 309-20. http://dx.doi.org/10.1016/S0010-9452(08)70662-2 DOI: https://doi.org/10.1016/S0010-9452(08)70662-2

Nijboer TC, Nys GM, van der Smagt MJ, van der Stigchel S, Dijkerman HC. Repetitive long-term prism adaptation permanently improves the detection of contralesional visual stimuli in a patient with chronic neglect. Cortex; a journal devoted to the study of the nervous system and behavior 2011; 47(6): 734-40. http://dx.doi.org/10.1016/j.cortex.2010.07.003 DOI: https://doi.org/10.1016/j.cortex.2010.07.003

Rusconi ML, Carelli L. Long-term efficacy of prism adaptation on spatial neglect: preliminary results on different spatial components. TheScientificWorldJournal 2012; 2012: 618528. DOI: https://doi.org/10.1100/2012/618528

Rode G, Rossetti Y, Boisson D. Prism adaptation improves representational neglect. Neuropsychologia 2001; 39(11): 1250-4. http://dx.doi.org/10.1016/S0028-3932(01)00064-1 DOI: https://doi.org/10.1016/S0028-3932(01)00064-1

Rode G, Rossetti Y, Li L, Boisson D. Improvement of mental imagery after prism exposure in neglect: a case study. Behavioural neurology 1998; 11(4): 251-8. http://dx.doi.org/10.1155/1999/797425 DOI: https://doi.org/10.1155/1999/797425

Farne A, Rossetti Y, Toniolo S, Ladavas E. Ameliorating neglect with prism adaptation: visuo-manual and visuo-verbal measures. Neuropsychologia 2002; 40(7): 718-29. http://dx.doi.org/10.1016/S0028-3932(01)00186-5 DOI: https://doi.org/10.1016/S0028-3932(01)00186-5

Rossetti Y, Jacquin-Courtois S, Rode G, Ota H, Michel C, Boisson D. Does action make the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological science 2004; 15(6): 426-30. http://dx.doi.org/10.1111/j.0956-7976.2004.00696.x DOI: https://doi.org/10.1111/j.0956-7976.2004.00696.x

Sumitani M, Rossetti Y, Shibata M, Matsuda Y, Sakaue G, Inoue T, et al. Prism adaptation to optical deviation alleviates pathologic pain. Neurology 2007; 68(2): 128-33. http://dx.doi.org/10.1212/01.wnl.0000250242.99683.57 DOI: https://doi.org/10.1212/01.wnl.0000250242.99683.57

Keane S, Turner C, Sherrington C, Beard JR. Use of fresnel prism glasses to treat stroke patients with hemispatial neglect. Archives of physical medicine and rehabilitation 2006; 87(12): 1668-72. http://dx.doi.org/10.1016/j.apmr.2006.08.322 DOI: https://doi.org/10.1016/j.apmr.2006.08.322

Jacquin-Courtois S, Rode G, Pisella L, Boisson D, Rossetti Y. Wheel-chair driving improvement following visuo-manual prism adaptation. Cortex; a journal devoted to the study of the nervous system and behavior 2008; 44(1): 90-6. http://dx.doi.org/10.1016/j.cortex.2006.06.003 DOI: https://doi.org/10.1016/j.cortex.2006.06.003

Yin PB, Kitazawa S. Long-lasting aftereffects of prism adaptation in the monkey. Experimental brain research 2001; 141(2): 250-3. http://dx.doi.org/10.1007/s002210100892 DOI: https://doi.org/10.1007/s002210100892

Goedert KM, Zhang JY, Barrett AM. Prism adaptation and spatial neglect: the need for dose-finding studies. Frontiers in human neuroscience 2015; 9: 243. http://dx.doi.org/10.3389/fnhum.2015.00243 DOI: https://doi.org/10.3389/fnhum.2015.00243

Krebs RM, Boehler CN, Egner T, Woldorff MG. The neural underpinnings of how reward associations can both guide and misguide attention. The Journal of neuroscience: the official journal of the Society for Neuroscience 2011; 31(26): 9752-9. http://dx.doi.org/10.1523/JNEUROSCI.0732-11.2011 DOI: https://doi.org/10.1523/JNEUROSCI.0732-11.2011

Putrino D. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Current opinion in neurology 2014; 27(6): 631-6. http://dx.doi.org/10.1097/WCO.0000000000000152 DOI: https://doi.org/10.1097/WCO.0000000000000152

Dos Santos LR, Carregosa AA, Masruha MR, Dos Santos PA, Da Silveira Coelho ML, Ferraz DD, et al. The Use of Nintendo Wii in the Rehabilitation of Poststroke Patients: A Systematic Review. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 2015; 24(10): 2298-305. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.06.010 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.06.010

Fu MJ, Knutson JS, Chae J. Stroke Rehabilitation Using Virtual Environments. Physical medicine and rehabilitation clinics of North America 2015; 26(4): 747-57. http://dx.doi.org/10.1016/j.pmr.2015.06.001 DOI: https://doi.org/10.1016/j.pmr.2015.06.001

Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. The Cochrane database of systematic reviews 2015(2): Cd008349. http://dx.doi.org/10.1002/14651858.cd008349.pub3 DOI: https://doi.org/10.1002/14651858.CD008349.pub3

Proffitt RM, Alankus G, Kelleher CL, Engsberg JR. Use of computer games as an intervention for stroke. Topics in stroke rehabilitation 2011; 18(4): 417-27. http://dx.doi.org/10.1310/tsr1804-417 DOI: https://doi.org/10.1310/tsr1804-417

Lauterbach SA, Foreman MH, Engsberg JR. Computer Games as Therapy for Persons with Stroke. Games for health journal 2013; 2(1): 24-8. http://dx.doi.org/10.1089/g4h.2012.0032 DOI: https://doi.org/10.1089/g4h.2012.0032

Lin J, Kelleher CL, Engsberg JR. Developing Home-Based Virtual Reality Therapy Interventions. Games for health journal 2013; 2(1): 34-8. http://dx.doi.org/10.1089/g4h.2012.0033 DOI: https://doi.org/10.1089/g4h.2012.0033

Sevick M, Eklund E, Mensch A, Foreman M, Standeven J, Engsberg J. Using Free Internet Videogames in Upper Extremity Motor Training for Children with Cerebral Palsy. Behavioral sciences (Basel, Switzerland) 2016; 6(2). http://dx.doi.org/10.3390/bs6020010 DOI: https://doi.org/10.3390/bs6020010

Baheux K, Yoshizawa M, Tanaka A, Seki K, Handa Y. Diagnosis and rehabilitation of hemispatial neglect patients with virtual reality technology. Technology and health care: official journal of the European Society for Engineering and Medicine 2005; 13(4): 245-60. DOI: https://doi.org/10.3233/THC-2005-13404

Tsirlin I, Dupierrix E, Chokron S, Coquillart S, Ohlmann T. Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: review and analysis. Cyberpsychology & behavior: the impact of the Internet, multimedia and virtual reality on behavior and society 2009; 12(2): 175-81. http://dx.doi.org/10.1089/cpb.2008.0208 DOI: https://doi.org/10.1089/cpb.2008.0208

Fordell H, Bodin K, Bucht G, Malm J. A virtual reality test battery for assessment and screening of spatial neglect. Acta neurologica Scandinavica 2011; 123(3): 167-74. http://dx.doi.org/10.1111/j.1600-0404.2010.01390.x DOI: https://doi.org/10.1111/j.1600-0404.2010.01390.x

Cipresso P, Serino S, Pedroli E, Gaggioli A, Riva G. A virtual reality platform for assessment and rehabilitation of neglect using a kinect. Studies in health technology and informatics 2014; 196: 66-8.

Ogourtsova T, Souza Silva W, Archambault PS, Lamontagne A. Virtual reality treatment and assessments for post-stroke unilateral spatial neglect: A systematic literature review. Neuropsychological rehabilitation 2015: 1-46. http://dx.doi.org/10.1080/09602011.2015.1113187 DOI: https://doi.org/10.1080/09602011.2015.1113187

Pallavicini F, Pedroli E, Serino S, Dell'Isola A, Cipresso P, Cisari C, et al. Assessing Unilateral Spatial Neglect using advanced technologies: The potentiality of mobile virtual reality. Technology and health care: official journal of the European Society for Engineering and Medicine 2015; 23(6): 795-807. http://dx.doi.org/10.3233/THC-151039 DOI: https://doi.org/10.3233/THC-151039

Pedroli E, Serino S, Cipresso P, Pallavicini F, Riva G. Assessment and rehabilitation of neglect using virtual reality: a systematic review. Frontiers in behavioral neuroscience 2015; 9: 226. http://dx.doi.org/10.3389/fnbeh.2015.00226 DOI: https://doi.org/10.3389/fnbeh.2015.00226

Weiss PL, Naveh Y, Katz N. Design and testing of a virtual environment to train stroke patients with unilateral spatial neglect to cross a street safely. Occupational therapy international 2003; 10(1): 39-55. http://dx.doi.org/10.1002/oti.176 DOI: https://doi.org/10.1002/oti.176

Katz N, Ring H, Naveh Y, Kizony R, Feintuch U, Weiss PL. Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disability and rehabilitation 2005; 27(20): 1235-43. http://dx.doi.org/10.1080/09638280500076079 DOI: https://doi.org/10.1080/09638280500076079

Kim J, Kim K, Kim DY, Chang WH, Park CI, Ohn SH, et al. Virtual environment training system for rehabilitation of stroke patients with unilateral neglect: crossing the virtual street. Cyberpsychology & behavior: the impact of the Internet, multimedia and virtual reality on behavior and society 2007; 10(1): 7-15. http://dx.doi.org/10.1089/cpb.2006.9998 DOI: https://doi.org/10.1089/cpb.2006.9998

Navarro MD, Llorens R, Noe E, Ferri J, Alcaniz M. Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychological rehabilitation 2013; 23(4): 597-618. http://dx.doi.org/10.1080/09602011.2013.806269 DOI: https://doi.org/10.1080/09602011.2013.806269

Kim DY, Ku J, Chang WH, Park TH, Lim JY, Han K, et al. Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program. Acta neurologica Scandinavica 2010; 121(3): 171-7. http://dx.doi.org/10.1111/j.1600-0404.2009.01194.x DOI: https://doi.org/10.1111/j.1600-0404.2009.01194.x

Pizzamiglio L, Guariglia C, Antonucci G, Zoccolotti P. Development of a rehabilitative program for unilateral neglect. Restorative neurology and neuroscience 2006; 24(4-6): 337-45.

Spaccavento S, Cellamare F, Cafforio E, Loverre A, Craca A. Efficacy of visual-scanning training and prism adaptation for neglect rehabilitation. Applied neuropsychology Adult 2016; 23(5): 313-21. http://dx.doi.org/10.1080/23279095.2015.1038386 DOI: https://doi.org/10.1080/23279095.2015.1038386

Fordell H, Bodin K, Eklund A, Malm J. RehAtt - scanning training for neglect enhanced by multi-sensory stimulation in Virtual Reality. Topics in stroke rehabilitation 2016; 23(3): 191-9. http://dx.doi.org/10.1080/10749357.2016.1138670 DOI: https://doi.org/10.1080/10749357.2016.1138670

Redding GM, Rossetti Y, Wallace B. Applications of prism adaptation: a tutorial in theory and method. Neuroscience and biobehavioral reviews 2005; 29(3): 431-44. http://dx.doi.org/10.1016/j.neubiorev.2004.12.004 DOI: https://doi.org/10.1016/j.neubiorev.2004.12.004

Facchin A, Daini R, Toraldo A. Prismatic adaptation in the rehabilitation of neglect patients: does the specific procedure matter? Frontiers in human neuroscience 2013; 7: 137. http://dx.doi.org/10.3389/fnhum.2013.00137 DOI: https://doi.org/10.3389/fnhum.2013.00137

Suma EKD, Lange B, Koenig S, Rizzo A, Bolas M. Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit. Computers & Graphics 2013; 37(3): 193-201. http://dx.doi.org/10.1016/j.cag.2012.11.004 DOI: https://doi.org/10.1016/j.cag.2012.11.004

Panico F, Sagliano L, Grossi D, Trojano L. Cerebellar cathodal tDCS interferes with recalibration and spatial realignment during prism adaptation procedure in healthy subjects. Brain and cognition 2016; 105: 1-8. http://dx.doi.org/10.1016/j.bandc.2016.03.002 DOI: https://doi.org/10.1016/j.bandc.2016.03.002

Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 1996; 383(6601): 618-21. http://dx.doi.org/10.1038/383618a0 DOI: https://doi.org/10.1038/383618a0

Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. The European journal of neuroscience 2008; 28(8): 1696-704. http://dx.doi.org/10.1111/j.1460-9568.2008.06460.x DOI: https://doi.org/10.1111/j.1460-9568.2008.06460.x

Luaute J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during prism adaptation. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009; 29(1): 169-78. http://dx.doi.org/10.1523/JNEUROSCI.3054-08.2009 DOI: https://doi.org/10.1523/JNEUROSCI.3054-08.2009

Chapman HL, Eramudugolla R, Gavrilescu M, Strudwick MW, Loftus A, Cunnington R, et al. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms. Neuropsychologia 2010; 48(9): 2595-601. http://dx.doi.org/10.1016/j.neuropsychologia.2010.05.006 DOI: https://doi.org/10.1016/j.neuropsychologia.2010.05.006

Saj A, Cojan Y, Vocat R, Luaute J, Vuilleumier P. Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients. Cortex; a journal devoted to the study of the nervous system and behavior 2013; 49(1): 107-19. http://dx.doi.org/10.1016/j.cortex.2011.10.009 DOI: https://doi.org/10.1016/j.cortex.2011.10.009

Baizer JS, Glickstein M. Proceedings: Role of cerebellum in prism adaptation. The Journal of physiology 1974; 236(1): 34p-5p.

Weiner MJ, Hallett M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 1983; 33(6): 766-72. http://dx.doi.org/10.1212/WNL.33.6.766 DOI: https://doi.org/10.1212/WNL.33.6.766

Werner S, Bock O, Gizewski ER, Schoch B, Timmann D. Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory. Experimental brain research 2010; 201(3): 429-39. http://dx.doi.org/10.1007/s00221-009-2052-6 DOI: https://doi.org/10.1007/s00221-009-2052-6

Cunningham HA. Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. Journal of experimental psychology Human perception and performance 1989; 15(3): 493-506. http://dx.doi.org/10.1037/0096-1523.15.3.493 DOI: https://doi.org/10.1037//0096-1523.15.3.493

Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to learning in a sensorimotor adaptation task. The Journal of neuroscience: the official journal of the Society for Neuroscience 2014; 34(8): 3023-32. http://dx.doi.org/10.1523/JNEUROSCI.3619-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.3619-13.2014

Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. Journal of neurophysiology 2009; 101(4): 1961-71. http://dx.doi.org/10.1152/jn.91069.2008 DOI: https://doi.org/10.1152/jn.91069.2008

Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, et al. Cerebellar regions involved in adaptation to force field and visuomotor perturbation. Journal of neurophysiology 2012; 107(1): 134-47. http://dx.doi.org/10.1152/jn.00007.2011 DOI: https://doi.org/10.1152/jn.00007.2011

Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. Journal of cognitive neuroscience 2011; 23(1): 11-25. http://dx.doi.org/10.1162/jocn.2010.21451 DOI: https://doi.org/10.1162/jocn.2010.21451

Mutha PK, Sainburg RL, Haaland KY. Left parietal regions are critical for adaptive visuomotor control. The Journal of neuroscience: the official journal of the Society for Neuroscience 2011; 31(19): 6972-81. http://dx.doi.org/10.1523/JNEUROSCI.6432-10.2011 DOI: https://doi.org/10.1523/JNEUROSCI.6432-10.2011

Ogawa K, Imamizu H. Human sensorimotor cortex represents conflicting visuomotor mappings. The Journal of neuroscience: the official journal of the Society for Neuroscience 2013; 33(15): 6412-22. http://dx.doi.org/10.1523/JNEUROSCI.4661-12.2013 DOI: https://doi.org/10.1523/JNEUROSCI.4661-12.2013

Seidler RD, Noll DC. Neuroanatomical correlates of motor acquisition and motor transfer. Journal of neurophysiology 2008; 99(4): 1836-45. http://dx.doi.org/10.1152/jn.01187.2007 DOI: https://doi.org/10.1152/jn.01187.2007

Richardson AG, Lassi-Tucci G, Padoa-Schioppa C, Bizzi E. Neuronal activity in the cingulate motor areas during adaptation to a new dynamic environment. Journal of neurophysiology 2008; 99(3): 1253-66. http://dx.doi.org/10.1152/jn.01096.2007 DOI: https://doi.org/10.1152/jn.01096.2007

Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation associated with sensorimotor adaptation. Experimental brain research 2006; 175(3): 544-55. http://dx.doi.org/10.1007/s00221-006-0571-y DOI: https://doi.org/10.1007/s00221-006-0571-y

Bedard P, Song JH. Attention modulates generalization of visuomotor adaptation. Journal of vision 2013; 13(12): 12. http://dx.doi.org/10.1167/13.12.12 DOI: https://doi.org/10.1167/13.12.12

Patel M, Kaski D, Bronstein AM. Attention modulates adaptive motor learning in the 'broken escalator' paradigm. Experimental brain research 2014; 232(7): 2349-57. http://dx.doi.org/10.1007/s00221-014-3931-z DOI: https://doi.org/10.1007/s00221-014-3931-z

Lang CE, MacDonald JR, Gnip C. Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. Journal of neurologic physical therapy: JNPT 2007; 31(1): 3-10. http://dx.doi.org/10.1097/01.NPT.0000260568.31746.34 DOI: https://doi.org/10.1097/01.NPT.0000260568.31746.34

Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Archives of physical medicine and rehabilitation 2009; 90(10): 1692-8. http://dx.doi.org/10.1016/j.apmr.2009.04.005 DOI: https://doi.org/10.1016/j.apmr.2009.04.005

Worthen-Chaudhari L. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 2015; 96(8): 1544. http://dx.doi.org/10.1016/j.apmr.2015.03.025 DOI: https://doi.org/10.1016/j.apmr.2015.03.025

Chen J, Jin W, Dong WS, Jin Y, Qiao FL, Zhou YF, et al. Effects of Home-based Telesupervising Rehabilitation on Physical Function for Stroke Survivors with Hemiplegia: A Randomized Controlled Trial. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2016. DOI: https://doi.org/10.1097/PHM.0000000000000559

Kairy D, Veras M, Archambault P, Hernandez A, Higgins J, Levin MF, et al. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial. Contemporary clinical trials 2016; 47: 49-53. http://dx.doi.org/10.1016/j.cct.2015.12.006 DOI: https://doi.org/10.1016/j.cct.2015.12.006

Veras M, Kairy D, Rogante M, Giacomozzi C, Saraiva S. Scoping review of outcome measures used in telerehabilitation and virtual reality for post-stroke rehabilitation. Journal of telemedicine and telecare 2016. http://dx.doi.org/10.1177/1357633X16656235 DOI: https://doi.org/10.1177/1357633X16656235

Cramer SC, Sur M, Dobkin BH, O'Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain: a journal of neurology 2011; 134(Pt 6): 1591-609. DOI: https://doi.org/10.1093/brain/awr039

Wolpaw JR. Harnessing neuroplasticity for clinical applications. Brain: a journal of neurology 2012; 135(Pt 4): e215; author reply e6. DOI: https://doi.org/10.1093/brain/aws017

Downloads

Published

2016-10-19

How to Cite

Carter, A., Foreman, M., Martin, C., Fitterer, S., Pioppo, A., Connor, L., & Engsberg, J. (2016). Inducing Visuomotor Adaptation Using Virtual Reality Gaming with a Virtual Shift as a Treatment for Unilateral Spatial Neglect. Journal of Intellectual Disability - Diagnosis and Treatment, 4(3), 170–184. https://doi.org/10.6000/2292-2598.2016.04.03.4

Issue

Section

Special Issue: The Versatility of Using Free Internet Videogames for Motor Therapy for Persons with Disabilities