Polychloroprene Rubber/Reduced Graphene Oxide (RGO) Nanomembranes for Pervaporation Separation of Azeotropic Mixtures

Authors

  • Maya M. G Centre for Nanoscience and Technology, Department of Basic Sciences, Amal Jyothi College of Engineering, Kanjirappally, Kottayam. Kerala, India
  • Soney C. George Centre for Nanoscience and Technology, Department of Basic Sciences, Amal Jyothi College of Engineering, Kanjirappally, Kottayam. Kerala, India
  • Thomasukutty Jose Centre for Nanoscience and Technology, Department of Basic Sciences, Amal Jyothi College of Engineering, Kanjirappally, Kottayam. Kerala, India
  • Sabu Thomas International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India

DOI:

https://doi.org/10.6000/1929-6037.2014.03.04.1

Keywords:

Pervaporation, graphene oxide, chloroprene rubber, azeotropic liquid mixtures, flux.

Abstract

Chloroprene rubber is a high performance elastomer with remarkable ageing, heat and oil resistance. A new class of elastomeric nanocomposite was prepared by incorporating reduced graphene oxide (RGO) into chloroprene rubber (CR). RGO is synthesised from natural graphite, through GO route via Hummer’s method. This paper focuses on the influence of reduced graphene oxide on chloroprene rubber based elastomeric composites and their pervaporation separation of azeotropic liquid mixtures. The effect of concentration of RGO on separation factor, pervaporation separation index (PSI) and flux of the membranes were analysed. Chloroprene loaded with 0.9 phr (parts per hundred rubber) RGO shows an improved permeation rate among all other membranes while chloroform/acetone (80/20) azeotropic liquid mixture was used as feed solution. Flux increases with increasing the concentration of filler, reaches an optimum value and then decreases. Interestingly PSI also shows similar trend.

References

Fleming HL, Slater CS, Pervaporation WSW, Ho KK. Sirkar (Eds.), Membrane Handbook, Van Nostrand Reinhold, New York; 1992; Chapter 10: 105.

Kober PA. Pervaporation, Perstillation. J Am Chem Soc 1917; 39: 944-948. http://dx.doi.org/10.1021/ja02250a011

Binning RC, Lee RJ. Separation, U.S. Patent 2, 1960; 953: 502.

Huang RYM. Pervaporation Membrane, Membr. Sci and Tech. Series1, Elsevier 1991.

Neel J, Huang RYM, Ed. Pervaporation Membrane Separation Process, 1991; Chapter 1.

Noble R.D, Stern S.A, Membr Sepa Tech., Principles and Applications, 1995.

Ray SK, Sawant SB, Joshi JB, Pangarkar VG. Development of New. Ind Eng Chem Res 1997; 36: 5265-5276. http://dx.doi.org/10.1021/ie970351v

Brookes; Livingston P.R; A.G. J Membr Sci 1995; 104: 119.

Yang D, Majumdar S, Kovenklioglu S. J Membr Sci 1995; 103: 195. http://dx.doi.org/10.1016/0376-7388(95)00003-U

Yeon C, Lee KH. J Membr Sci 1996; 109: 257. http://dx.doi.org/10.1016/0376-7388(95)00196-4

Ray S, Ray SK. Effect of Copolymer type. J Membr Sci 2006; 270: 73-87. http://dx.doi.org/10.1016/j.memsci.2005.06.055

Liu F, Liu L, Feng X. Separation of Acetone. Sep Purif Technol 2005; 42: 273-282. http://dx.doi.org/10.1016/j.seppur.2004.08.005

Khayet M, Matsuura T. Pervaporation and Vacuum. AIChE J 2004; 50: 1697-1712. http://dx.doi.org/10.1002/aic.10161

Dutter BK, Sikdar SK. Separation of Azeotropic. AIChE J 1991; 37: 501.

Lee GT, Kroviddi KR, Greenbag DB. Pervaporation of Trace. J Membr Sci 1989; 47: 183. http://dx.doi.org/10.1016/S0376-7388(00)80867-4

Park HC, Meertens RM, Mulder MHV, Smolders CA. Pervaporation of Alcohol. J Membr Sci 1994; 90: 265. http://dx.doi.org/10.1016/0376-7388(94)80076-6

Unnikrishnan G, Gedam PH, Kishan Prasad VS, Thomas S. Separation of n-hexane/acetone. J Appl Polym Sci 1997; 64: 2597. http://dx.doi.org/10.1002/(SICI)1097-4628(19970627)64:13<2597::AID-APP13>3.0.CO;2-X

Uragami T, Shinomiya H. Macromol Che 1991; 192: 2293. http://dx.doi.org/10.1002/macp.1991.021921009

Hu XH, Ping ZH, Zhu Q, Ding ZM, Ding YD. Pervaportion Properties. Chem J Chin Univ 1998; 19: 647.

Choi J-H, Jegal J, Kim W-N, Choi H-S. J Appl Polym Sci 2009; 111: 2186-2193. http://dx.doi.org/10.1002/app.29222

Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem Soc Rev 2010; 39: 228-40. http://dx.doi.org/10.1039/b917103g

Pei S, Cheng H-M. Carbon 2012; 50: 3210-3228. http://dx.doi.org/10.1016/j.carbon.2011.11.010

Dutta BK, Sikdar SK. Separation of Azeotropic. AlChE J 1991; 37: 581.

George SC, Ninan KN, Sabu Thomas. Pervaporation Separation. J Membrane Sci 2000; 176: 131-142. http://dx.doi.org/10.1016/S0376-7388(00)00439-7

Asman G, Oya S. Separation Characteristics. J Appl Polym Sci 2006; 100: 2030-2039. http://dx.doi.org/10.1002/app.22613

Huang RYM, Feng X. Dehydration of Isopropanol. Sep Sci Technol 1993; 28: 2035. http://dx.doi.org/10.1080/01496399308016732

Zhan Y, Wu J, Xia H, Yan N, Fei G. Dispersion and exfoliation; Macromol Mater Eng 2011; 296: 590-602. http://dx.doi.org/10.1002/mame.201000358

Lian H, Li S, Liu K, Xu L. Study on modified graphene. Polym Eng Sci 2011; 51: 2254-60. http://dx.doi.org/10.1002/pen.21997

Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM. Dehydration of 1,4-dioxane. J Membr Sci 2006; 280: 138-147. http://dx.doi.org/10.1016/j.memsci.2006.01.006

Downloads

Published

2014-12-03

How to Cite

G, M. M., George, S. C., Jose, T., & Thomas, S. (2014). Polychloroprene Rubber/Reduced Graphene Oxide (RGO) Nanomembranes for Pervaporation Separation of Azeotropic Mixtures. Journal of Membrane and Separation Technology, 3(4), 178–184. https://doi.org/10.6000/1929-6037.2014.03.04.1

Issue

Section

Articles