Divalent Transition Metals Substituted LaFeO3 Perovskite Catalyst for Nitrous Oxide Decomposition

Authors

  • Asma H.A. Medkhali Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203, Saudi Arabia
  • Katabathini Narasimharao Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203, Saudi Arabia
  • Sulaiman N. Basahel Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, P.O. Box 80203, Saudi Arabia
  • Mohamed Mokhtar Physical Chemistry Department, National Research centre, El Buhouth St., Dokki, Cairo, Egypt

DOI:

https://doi.org/10.6000/1929-6037.2014.03.04.3

Keywords:

Perovskite, N2O decomposition, Ni and Cu metal ions, XRD, H2-TPR.

Abstract

Divalent transition metals substituted LaFeO3 type perovskite catalysts (LaFe0.95M0.05O3 with M= Cu2+ and Ni2+) were synthesized by hydrothermal method and characterized by using X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR) and N2-physisorption techniques. The catalytic activity of the catalysts was tested for N2O decomposition reaction. Enhancement in the catalytic activity was observed after substitution of Cu and Ni metal ions into LaFeO3 framework. LaFe0.95Ni0.05O3 showed higher catalytic activity than LaFeO3 and LaFe0.95Cu0.05O3 catalysts. The plausible reason for the increased activity is that LaFe0.95Ni0.05O3 sample possessed high oxygen mobility than the other two samples.

References

Meolin L, Ashok VJ, Yousheng S, Kevin K, Anil VV, inventors; Gas Res. Inst., assignee. Mixed ionic-electronic conductors for oxygen separation and electrocatalysis. United States patent US 5478444A. 1995 Dec.

Shao Z, Xiong G, Dong H, Yang W, Lin L. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Sep Purif Technol 2001; 25: 97-116. http://dx.doi.org/10.1016/S1383-5866(01)00095-8

Balachandran U, Ma B. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion. J Solid State Electrochem 2006; 10: 617-24. http://dx.doi.org/10.1007/s10008-006-0126-y

Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M, Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3−δ membrane reactor for partial oxidation of methane to syngas. Appl Catal A: Gen 2005; 290: 212-20. http://dx.doi.org/10.1016/j.apcata.2005.05.033

Leo A, Liu S, Costa JC, Development of mixed conducting membranes for 69clean coal energy delivery. Int J Greenh Gas Control 2009; 3: -35767.

Zhu W, HanW, Xiong G, Yang W, Mixed reforming of simulated gasoline tohydrogen in a BSCFO membrane reactor. Catal Tod 2006; 118: 39-43. http://dx.doi.org/10.1016/j.cattod.2005.11.088

Tejuca LG, Fierro JL, Eds. Structure and reactivity of perovskite-type oxides. Academic Press: Elsevier 1989.

Leontiou AA, Ladavos AK, Bakas TV, Vaimakis TC, Pomonis PJ, Reverse uptake of oxygen from La1-xSrx (Fe3+/Fe4+)O3±δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, 0.90). Appl Catal A: Gen 2003; 241: 143-54. http://dx.doi.org/10.1016/S0926-860X(02)00458-1

Tien-Thao N, Alamdari H, Zahedi-Niaki MH, Kaliaguine S, LaCo1-xCuxO3-δ perovskite catalysts for higher alcohol synthesis. Appl Catal A: Gen 2006; 311: 204-12. http://dx.doi.org/10.1016/j.apcata.2006.06.029

Dhar GM, Srinivasan V, Surface oxygen bond energy, and kinetics and catalysis on perovskite oxide catalysts. Int J Chem Kinet 1982; 14: 435-38. http://dx.doi.org/10.1002/kin.550140409

Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK, Perovskite Oxides: Materials Science in Catalysis. Science 1977; 195(4281): 827-33. http://dx.doi.org/10.1126/science.195.4281.827

Ivanov DV, Pinaeva LG, Isupova LA, Nadeev AN, Prosvirin IP, Dovlitova LS, Insights into the Reactivity of La1-xSrx MnO3 (x = 0-0.7) in High Temperature N2O Decomposition. Catal Lett 2011; 141: 322-31. http://dx.doi.org/10.1007/s10562-010-0503-0

Climate Change-Emissions Overview -Nitrous Oxide. 13/9/2013 [cited 18/9/2013]; Available from: http://epa.gov/ climatechange/ghgemissions/gases/n2o.html.

Kumar S, Vinu A, Subrt J, Bakardjieva S, Rayalu S, Teraoka Y, Labhsetwar N, Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control. Catal Tod 2012; 198: 125-32. http://dx.doi.org/10.1016/j.cattod.2012.06.015

Wu Y, Ni X, Beaurain A, Dujardin C, Granger P, Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Appl Catal B: Environ 2012; 125: 149-57. http://dx.doi.org/10.1016/j.apcatb.2012.05.033

Wu Y, Dujardin C, Granger P, Tiseanu C, Sandu S, Kuncser V, Parvulescu VI, Spectroscopic Investigation of Iron Substitution in EuCoO3: Related Impact on the Catalytic Properties in the High-Temperature N2O Decomposition. J Phys Chem C 2013; 117: 13989-99. http://dx.doi.org/10.1021/jp402211c

Gunasekaran N, Rajadurai S, Carberry JJ, Catalytic decomposition of nitrous oxide over perovskite type solid oxide solutions and supported noble metal catalysts. Catal Lett 1995; 35: 373-82. http://dx.doi.org/10.1007/BF00807194

Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P, Surface reconstructions of LaCo1-xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: Impact on the catalytic properties. Appl Catal B: Environ 2013; 140-141: 151-63. http://dx.doi.org/10.1016/j.apcatb.2013.04.002

Hammou A, Guindet J, Eds. The CRC Handbook of Solid State Electrochemistry (Gellings PJ, Bouwmeester HJM), CRC Press Inc: 1997.

Steele BCH, Heinzel A, Materials for fuel-cell technologies. Nature 2001; 414: 345-52. http://dx.doi.org/10.1038/35104620

Chao SJ, Song KS, Ryu IS, Seo YS, Rayoo MW, Kang SK, Characteristics of methane combustion over La–Cr–O catalysts. Catal Lett 1999; 58: 63-6. http://dx.doi.org/10.1023/A:1019092809562

Minh NQ, Ceramic fuel cells. J Amer Ceram Soc 1993; 76: 563-88. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03645.x

Steele BCH, Oxygen ion conductors and their technological applications. Mater Sci Eng B 1992; 13: 79-87. http://dx.doi.org/10.1016/0921-5107(92)90146-Z

Tofan C, Klvana D, Kirchnerova J, Direct decomposition of nitric oxide over perovskite-type catalysts: Part I. Activity when no oxygen is added to the feed Appl Catal A: Gen, 2002; 223: 275-86. http://dx.doi.org/10.1016/S0926-860X(01)00764-5

Radwan NRE, Mokhtar M, El-Shobaky GA, Surface and catalytic properties of CuO and Co3O4 solids as influenced by treatment with Co2+ and Cu2+ species. Appl Catal A: Gen 2003; 241: 77-90. http://dx.doi.org/10.1016/S0926-860X(02)00459-3

El-Shobaky HG, Mokhtar MM, Effect of Li2O and CoO-doping of CuO/Fe2O3 system on its surface and catalytic properties. Appl Sur Sci 2007; 253(24): 9407-13. http://dx.doi.org/10.1016/j.apsusc.2007.06.001

He F, Zhao K, Huang Z, Li Xa, Wei G, Li H, Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane. Chin J Catal 2013; 34(6): 1242-49. http://dx.doi.org/10.1016/S1872-2067(12)60563-4

Huheey JE, Keiter EA, Keiter RJ, Chemistry. Principles of structure and reactivity. Harper Collins: College Publishers, 1993.

Downloads

Published

2014-12-03

How to Cite

Medkhali, A. H., Narasimharao, K., Basahel, S. N., & Mokhtar, M. (2014). Divalent Transition Metals Substituted LaFeO3 Perovskite Catalyst for Nitrous Oxide Decomposition. Journal of Membrane and Separation Technology, 3(4), 206–212. https://doi.org/10.6000/1929-6037.2014.03.04.3

Issue

Section

Articles