Development of Porous Asymmetric Polyamide–Imide Torlon® Membranes for Physical CO2 Absorption and Separation

Authors

  • S. Sheikhi Department of Chemical Engineering, Mahshahr branch, Islamic Azad University, Mahshahr, Iran
  • A. Mansourizadeh Department of Chemical Engineering, Gachsaran branch, Islamic Azad University, Gachsaran, Iran

DOI:

https://doi.org/10.6000/1929-6037.2014.03.04.6

Keywords:

Polyamide-imide membrane, non-solvent additive, CO2 absorption, membrane contactor.

Abstract

Porous flat-sheet polyamide–imide (PAI) membranes were prepared via a phase inversion method to evaluate CO2 absorption performance in the gas-liquid membrane contactors. Different amounts of polyethylene glycol (PEG-600) were introduced into the polymer solution to investigate the structure and performance of resulted membranes. The membranes were characterized in terms of gas permeation, contact angle measurement and CO2 absorption flux. By introducing 6 wt.% PEG into the polymer dope, N2 permeance of the membrane was significantly improved from 482 to 1320 GPU. Mean while, the effect of PEG on the measured water contact angle was in significant. From CO2 absorption test, the developed membrane presented about 90% higher CO2flux compared to the plain membrane at water flow rate of 70 ml/min. In conclusion, by introducing a polymeric non-solvent additive into the polymer dope, it is possible to enhance surface porosity (permeability) of PAI membranes, which is a key factor for CO2 absorption test.

References

Qi Z, Cussler EL. Microporous hollow fibers for gas absorption. Part 1: mass transfer in the liquid. J Membr Sci 1985; 23: 321-32. http://dx.doi.org/10.1016/S0376-7388(00)83149-X

Qi Z, Cussler EL. Microporous hollow fibers for gas absorption. Part 2: mass transfer across the membrane, J Membr Sci1985; 23: 333-45. http://dx.doi.org/10.1016/S0376-7388(00)83150-6

Bhaumik D, Majumdar S, Sirkar KK. Absorption of CO2 in a transverse flow hollow fiber module having a few wraps of the fiber mat. J MembrSci 1998; 138: 77-82. http://dx.doi.org/10.1016/S0376-7388(97)00208-1

Feron PHM, Jensen AE. CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performance and prospects. Sep Purif Technol 2002; 27: 231-42. http://dx.doi.org/10.1016/S1383-5866(01)00207-6

Kumar PS, Hagendoorn JA, Feron PHM, Versteeg GF. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. Chem Eng Sci 2002; 57: 1639-51. http://dx.doi.org/10.1016/S0009-2509(02)00041-6

Dindore VY, Brilman DWF, Geuzebroek FH, Versteeg GF. Membrane solvent selection for CO2 removal using membrane gas-liquid contactors. Sep Purif Technol 2004; 40: 133-45. http://dx.doi.org/10.1016/j.seppur.2004.01.014

Atchariyawut S, Feng C, Wang R,Jiraratananon R, Liang DT. Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. J Membr Sci 2006; 285: 272-81. http://dx.doi.org/10.1016/j.memsci.2006.08.029

Mansourizadeh A, Ismail AF. Effect of additives on the structure and performance of polysulfone hollow fiber

membranes for CO2 absorption. J Membr Sci 2010; 348: 260-67. http://dx.doi.org/10.1016/j.memsci.2009.11.010

Bakeri Gh, Ismail AF,Shariaty-Niassar M, Matsuura T. Effect of polymer concentration on the structure and performance of polyetherimide hollow fiber membranes. J MembrSci 2010; 363: 103-11. http://dx.doi.org/10.1016/j.memsci.2010.07.018

Mansourizadeh A, Ismail AF, Abdullah MS, Ng BC. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. J Membr Sci 2010; 355: 200-7. http://dx.doi.org/10.1016/j.memsci.2010.03.031

Gabelman A, Hwang ST. Hollow fiber membrane contactors. J Membr Sci 1999; 159: 61-106. http://dx.doi.org/10.1016/S0376-7388(99)00040-X

Mansourizadeh A, Ismail AF. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. J Hazard Mater 2009; 171: 38-53. http://dx.doi.org/10.1016/j.jhazmat.2009.06.026

Li JL, Chen BH. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 2005; 41: 109-22. http://dx.doi.org/10.1016/j.seppur.2004.09.008

Rajabzadeh S, Yoshimoto S,Teramoto M, Al-Marzouqi M, Matsuyama H. CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol 2009; 69: 210-20. http://dx.doi.org/10.1016/j.seppur.2009.07.021

Ismail AF, Mansourizadeh A. A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption. J Membr Sci 2010; 365: 319-28. http://dx.doi.org/10.1016/j.memsci.2010.09.021

Xu A, Yang A, Young S,deMontigny D,Tontiwachwuthikul P. Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption. J Membr Sci 2008; 311: 153-58. http://dx.doi.org/10.1016/j.memsci.2007.12.008

Bakeri Gh, Ismail AF, Rahimnejad M, Matsuura T, Rana D. The effect of bore fluid type on the structure and performance of polyetherimide hollow fiber membrane in gas-liquid contacting processes. Sep Purif Technol 2012; 98: 262-69. http://dx.doi.org/10.1016/j.seppur.2012.07.024

Qin JJ, Chung TS. Effects of orientation relaxation and bore fluid chemistry on morphology and performance of polyethersulfone hollow fibers for gas separation. J Membr Sci 2004; 229: 1-9. http://dx.doi.org/10.1016/j.memsci.2003.10.014

Roberson GP, Guiver MD, Yoshikawa M, Brownstein S. Structural determinationof Torlon® 4000T polyamide-imide by NMR spectroscopy. Polymer 2004; 45: 1111-17. http://dx.doi.org/10.1016/j.polymer.2003.12.029

Zhang Y, Wang R, Zhang L, Fane AG. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application, Sep Purif Technol 2012; 101: 76-84. http://dx.doi.org/10.1016/j.seppur.2012.09.009

Zhang Y, Wang R, Yi S, Setiawan L, Hu X, Fane AG. Novel chemical surface modification to enhance hydrophobicity of polyamide-imide (PAI) hollow fiber membranes. J Membr Sci 2011; 380: 241-250. http://dx.doi.org/10.1016/j.memsci.2011.07.016

Henis JMS, Tripodi MK. Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 1981; 8: 233-46. http://dx.doi.org/10.1016/S0376-7388(00)82312-1

Mulder J. Basic Principles of Membrane Technology. Kluver Academic Publishers: The Netherlands; 1996. http://dx.doi.org/10.1007/978-94-009-1766-8

Xu Z, Huang X, WanL. Surface Engineering of Polymer Membranes, Springer-Verlag: GmbH Berlin; 1981. http://link.springer.com/book/10.1007%2F978-3-540-88413-2

Zhang HY, Wang R, Liang DT, Tay JH. Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption. J Membr Sci 2008; 308: 162-70. http://dx.doi.org/10.1016/j.memsci.2007.09.050

Bakeri Gh, Ismail AF, Rahimnejad M, Matsuura T. Porous polyethersulfone hollow fiber membrane ingas-liquid contacting processes. Chem Eng Res Des 2014; 92: 1381-1390. http://dx.doi.org/10.1016/j.cherd.2013.11.008

Ismail AF, Mansourizadeh A. A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption, J Membr Sci 2010; 365: 319-328. http://dx.doi.org/10.1016/j.memsci.2010.09.021

Bakeri Gh, Ismail AF, Rahimnejad M, Matsuura T, Rana D. The effect of bore fluid type on the structure and performance of polyetherimide hollow fiber membrane in gas-liquid contacting processes. Sep Purif Technol 2012; 98: 262-269. http://dx.doi.org/10.1016/j.seppur.2012.07.024

Atchariyawut S, Jiraratananon R, Wang R. Mass transfer study and modelingof gas-liquid membrane contacting process by multistage cascade model for CO2 absorption. Sep Purif Technol 2008; 63: 15-22. http://dx.doi.org/10.1016/j.seppur.2008.03.005

Downloads

Published

2014-12-03

How to Cite

Sheikhi, S., & Mansourizadeh, A. (2014). Development of Porous Asymmetric Polyamide–Imide Torlon® Membranes for Physical CO2 Absorption and Separation. Journal of Membrane and Separation Technology, 3(4), 224–231. https://doi.org/10.6000/1929-6037.2014.03.04.6

Issue

Section

Articles