A Review of Applications of Rotating and Vibrating Membranes Systems: Advantages and Drawbacks

Authors

  • Michel Y. Jaffrin Technological University of Compiegne, 60205 Compiegne Cedex, 1UMR CNRS 7338, France
  • Luhui Ding Technological University of Compiegne,2EA 4297 TIMR, France

DOI:

https://doi.org/10.6000/1929-6037.2015.04.03.5

Keywords:

High shear rate filtration, rotating disks, rotating or vibrating membranes

Abstract

Dynamic filtration (DF) consists in creating a high membrane shear rate by disks rotating near a fixed membrane or by rotating or vibrating membranes. The shear rate can exceed 3 105s-1 in some modules and significantly increases permeate flux and membrane selectivity as compared to cross flow (CF) devices. This paper describes several DF industrial modules and gives equations for calculating shear rates at rotating and vibrating membranes. It reviews 23 recent articles from 2008 to 2014, dealing with diverse applications: separation of microalgae from sea water by UF, clarification of rough beer, concentration of CaCO3 suspensions, treatment of dairy effluents and shipboard wastewaters, inulin extraction from chicory juice, treatment of oil field water, and separation of bovine albumin from yeast. In several applications, the maximum permeate flux at initial concentration ranged from 270 to 760 Lh-1m-2. Modules with ceramic membranes rotating around several shafts inside a housing seem to be preferable to the concept of multi-compartments modules with metal disks rotating between fixed membranes. Since the cost of DF modules is higher than that of spiral wound ones, it is better to apply DF to ”end of pipe treatment” after an initial concentration by CF.

References

Lee SA, Russoti BG, Buckland B. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system. Biotech Bioeng 1995; 48: 386-400. http://dx.doi.org/10.1002/bit.260480411

Dal-Cin MM, Lick CN, Kumar A, Lealess S. Dispersed phase back transport during ultrafiltration of cutting oil emulsions with a spinning disc geometry. J Membr Sci 1998; 141: 165-81. http://dx.doi.org/10.1016/S0376-7388(97)00304-9

Bouzerar R, Ding LH, Jaffrin MY. Local permeate flux-shear-pressure relationships in a rotating disk microfiltration module: implications for global performance. J Membr Sci 2000; 170: 127-41. http://dx.doi.org/10.1016/S0376-7388(99)00348-8

Armando AD, Culkin B, Purchas DB. New separation system extends the use of membranes. Proc. Euromembrane 92, Paris vol. 6, Lavoisier 1992; p. 459.

Bouzerar R, Jaffrin MY, Ding LH, Paullier P. Influence of geometry and angular velocity on performance of a rotating disk filter. AIChE J 2000; 46: 257-65. http://dx.doi.org/10.1002/aic.690460206

Brou A, Ding LH, Jaffrin MY. Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes. J Membr Sci 2002; 197: 269-82. http://dx.doi.org/10.1016/S0376-7388(01)00642-1

Frappart M, Akoum O, Ding LH, Jaffrin MY. Treatment of dairy process waters modelled by diluted milk using dynamic nanofiltration with a rotating disk module. J Membr Sci 2006; 282: 465-72. http://dx.doi.org/10.1016/j.memsci.2006.06.005

Liebermann F. Dynamic crossflow filtration with Novoflow’s single shaft disk filters. Desalin 2010; 250: 1087-90. http://dx.doi.org/10.1016/j.desal.2009.09.114

Mänttäri M, Vitikko K, Nystrom M. Nanofiltration of biologically treated effluents from the pulp and paper industry. J Membr Sci 2006; 272: 152-60. http://dx.doi.org/10.1016/j.memsci.2005.07.031

Brou A, Ding LH, Jaffrin MY. Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes. J Membr Sci 2002; 197: 269-82. http://dx.doi.org/10.1016/S0376-7388(01)00642-1

Torras C, Pallares J, Garcia-Valls R, Jaffrin MY. CFD simulation of a rotating disk flat; membrane module. Desalin 2006; 200: 453-5. http://dx.doi.org/10.1016/j.desal.2006.03.365

Murkes J, Carlsson CG. Crossflow filtration. John Wiley & Sons 1988.

Al-Akoum O, Jaffrin MY, Ding LH, Paullier P, Vanhoutte C. An hydrodynamic investigation of microfiltration and ultrafiltration in a vibrating membrane module. J Membr Sci 2002; 197: 37-52. http://dx.doi.org/10.1016/S0376-7388(01)00602-0

Jaffrin MY, Ding L, Akoum O, Brou A. A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. J Membr Sci 2004; 242: 155-67. http://dx.doi.org/10.1016/j.memsci.2003.07.029

Frappart M, Massé A, Jaffrin MY, Pruvost J, Jaouen P. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalin 2011; 235: 279-83. http://dx.doi.org/10.1016/j.desal.2010.07.061

Fillaudeau L, Boissier B, Moreau A, Blanpain Avet P, Ermolaev S, Jitariouk N, Gourdon A. Investigation of rotating and vibrating filtration for clarification of rough beer. J Food Eng 2007; 80: 206-17. http://dx.doi.org/10.1016/j.jfoodeng.2006.05.022

Sarkar P, Ghosh S, Dutta S, Sen D, Bhattacharjee C. Effect of different operating parameters on the recovery of proteins from casein whey using a rotating disc membrane ultrafiltration cell. Desalin 2009; 249: 5-11. http://dx.doi.org/10.1016/j.desal.2009.06.007

Taamneh Y, Ripperger S. Performance of single and double shaft disk separators. Phys Separ. in Science and Eng 2008; ID508617

Tu Z, Ding L. Microfiltration of mineral suspensions using a MSD module with rotating ceramic and polymeric membranes. Separ Purif Technol 2010; 73: 363-70. http://dx.doi.org/10.1016/j.seppur.2010.04.024

Luo J, Ding L, Wan Y, Paullier P, Jaffrin MY. Fouling behaviour of dairy wastewater treatment by nanofiltration under shear-enhanced extreme hydraulic conditions. Sep Purif Technol 2012; 88: 79-86. http://dx.doi.org/10.1016/j.seppur.2011.12.008

Luo J, Ding L, Wan Y, Jaffrin MY. Threshold flux for shear–enhanced nanofiltration: experimental observation in dairy wastewater treatment. J Membr Sci 2012; 409-10: 276-84. http://dx.doi.org/10.1016/j.memsci.2012.03.065

Bendick J, Reed B, Morrow P, Carole T. Using a high shear rotary membrane system to treat shipboard wastewaters: Experimental disk diameter, rotation and flux relationships. J Membr Sci 2014; 462: 178-84. http://dx.doi.org/10.1016/j.memsci.2014.02.015

Zhu Z, Luo J, Ding L, Bals O, Jaffrin MY, Vorobiev E. Chicory juice clarification by membrane filtration using rotating disk module. J Food Eng 2013; 115: 264-73. http://dx.doi.org/10.1016/j.jfoodeng.2012.10.028

Zhu Z, Ladeg S, Ding L, Bals O, Moulai-Mostefa N, et al. Study of rotating disk assisted dead-end filtration of chicory juice and its performance optimization. Indus Crops and Products 2014; 53: 154-62. http://dx.doi.org/10.1016/j.indcrop.2013.12.030

Ebrahimi M, Schmitz O, Kerker S, Lieberman F, Czermak P. Dynamic cross flow filtration of oil-field produced water by rotating ceramic filter discs. Desalin and Water Treatment 2013; 51: 1762-8. http://dx.doi.org/10.1080/19443994.2012.694197

Zhang W, Zhu Z, Jaffrin MY, Ding L. Effects of hydraulic conditions on effluent quality, flux behaviour, and energy consumption in a shear–enhanced membrane filtration using Box-Behnken reponse surface methodology. Ind Eng Chem Res 2014; 53(17) 71: 76-85.

Luo J, Zhu Z, Ding L, Bals O, Wan Y, Jaffrin MY, Vorobiev E. Flux behavior in clarification of chicory juice by high-shear membrane filtration: Evidence for threshold flux. J Membr Sci 2013; 435: 120-9. http://dx.doi.org/10.1016/j.memsci.2013.01.057

Rios SD, Salvado J, Farriol X, Torras C. Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresources Tech 2012; 119: 406-18. http://dx.doi.org/10.1016/j.biortech.2012.05.044

Shi W, Benjamin MM. Effect of shear rate on fouling in a vibratory shear enhanced processing VSEP RO system. J Membr Sci 2011; 366: 148-57. http://dx.doi.org/10.1016/j.memsci.2010.09.051

Ahmed S, Rasul MG, Hasib MA, Watanabe Y. Performance of a nanofiltration membrane in a vibrating module (VSEP-NF) for arsenic removal. Desalin 2010; 252: 127-34. http://dx.doi.org/10.1016/j.desal.2009.10.013

Zouboulis AI, Petala MD. Performance of VSEP vibratory membrane filtration system during the treatment of landfill leachates. Desalination 2008; 222: 165-75. http://dx.doi.org/10.1016/j.desal.2007.01.145

Subramani A, DeCarolis J, Pearce W, Jacangelo JG. Vibratory shear enhanced process (VSEP) for treating brackish water reverse osmosis concentrate with high silica content. Desalination 2012; 291: 15-22. http://dx.doi.org/10.1016/j.desal.2012.01.020

Kertesz S, Laszlo Z, Forgacs E, Szabo G, Hodur C. Dairy wastewater purification by vibratory enhanced processing, Desal Water Treatment 2011; 35: 195-201. http://dx.doi.org/10.5004/dwt.2011.2485

Gomaa HG, Rao S, Al-Taweel AM. Intensification of membrane microfiltration using oscillatory motion. Sepur Purif Techol 2011; 78: 336-44. http://dx.doi.org/10.1016/j.seppur.2011.01.007

Gomaa HG, Rao S, Al-Taweel AM. Flux enhancement using oscillatory motion and turbulent promoters. J Membr Sci 2011; 381: 64-73. http://dx.doi.org/10.1016/j.memsci.2011.07.014

Beier SP, Jonsson G. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influences of extracellular polymeric substances. Chem Eng Sci 2009; 64: 1436-44. http://dx.doi.org/10.1016/j.ces.2008.12.008

Yang X, Wang R, Fane AG, Tang CY, Wenten IG. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fibers modules: a review. Desalin Water Treatment 2013; 51: 3604-27. http://dx.doi.org/10.1080/19443994.2012.751146

Downloads

Published

2015-09-14

How to Cite

Jaffrin, M. Y., & Ding, L. (2015). A Review of Applications of Rotating and Vibrating Membranes Systems: Advantages and Drawbacks. Journal of Membrane and Separation Technology, 4(3), 134–148. https://doi.org/10.6000/1929-6037.2015.04.03.5

Issue

Section

Articles