Characterisation of Mass Transfer in Frontal Nanofiltration Equipment and Development of a Simple Correlation

Authors

  • Darren L. Oatley-Radcliffe Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
  • Steffan R. Williams Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
  • Christopher Lee Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
  • Paul M. Williams Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK

DOI:

https://doi.org/10.6000/1929-6037.2015.04.04.1

Keywords:

Mass transfer, Concentration polarisation, Equipment characterisation, Frontal filtration, Nanofiltration

Abstract

This aim of this work was to investigate the effects of mass transfer in three commercially available frontal nanofiltration systems (Amicon, Sterlitech and Membranology) using the rejection of uncharged poly ethylene glycol (molecular weight 3400) at different pressures and stirrer speeds using a 4000 MWCO membrane. The real rejection was calculated from the observed rejection using the infinite rejection method and a comparison was made between experimentally obtained mass transfer coefficients and those obtained from commonly used ultrafiltration theory. A new mass transfer correlation was proposed that is more appropriate to account for the increased mass transfer effects observed with the larger pressures of nanofiltration. This new correlation is defined as NSh = j(NRe)n (NSc)0.33(1+(Jv/wr)x) is only a minor modification to existing theory and has an accuracy suitable for engineering design purposes.

References

Wang R, Li Y, Wang J, You G, Cai C, Chen BH. Modeling the permeate flux and rejection of nanofiltration membrane separation with high concentration uncharged aqueous solutions. Desalination 2012; 299: 44-49. http://dx.doi.org/10.1016/j.desal.2012.05.014

Bhattacharjee C, Datta S. Analysis of polarized layer resistance during ultrafiltration of PEG-6000: an approach based on filtration theory. Separation and Purification Technology 2003; 33: 115-126. http://dx.doi.org/10.1016/S1383-5866(02)00142-9

Wyart Y, Georges G, Deumie C, Amra C, Moulin P. Membrane characterization by microscopic methods: Multiscale structure. Journal of Membrane Science 2008; 315: 82-92. http://dx.doi.org/10.1016/j.memsci.2008.02.010

Ball P. Scale-up and scale-down of membrane-based separation processes. Membrane Technology 2000; 117: 10-13. http://dx.doi.org/10.1016/S0958-2118(00)86634-3

Maskan F, Wiley DE, Johnston LPM, Clements DJ. Optimal design of reverse osmosis module networks. AIChE Journal 2000; 46: 946-954. http://dx.doi.org/10.1002/aic.690460509

Kawachale N, Kirpalani DM, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chemical Engineering and Processing: Process Intensification 2010; 49: 680-688. http://dx.doi.org/10.1016/j.cep.2009.08.001

Koutsou CP, Karabelas AJ. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers. Journal of Membrane Science 2012; 399-400: 60-72.

Chen J, Li Q, Elimelech M. In situ monitoring techniques for concentration polarisation and fouling phenomena in membrane filtration. Advances in Colloid and Interface Science 2004; 107: 83-108. http://dx.doi.org/10.1016/j.cis.2003.10.018

Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresource Technology 2012; 122: 27-34. http://dx.doi.org/10.1016/j.biortech.2012.04.089

Sablani SS, Goosen MFA, Al-Belushi R, Wilf M. Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 2001; 141: 269-289. http://dx.doi.org/10.1016/S0011-9164(01)85005-0

Ma S, Kassinos SC, Kassinos DF. Assessing the impact of concentration-dependent fluid properties on concentration polarization in crossflow membrane systems. Industrial & Engineering Chemistry Research 2008; 47: 1636-1649. http://dx.doi.org/10.1021/ie0713893

Kim S, Hoek EMV. Modelling concentration polarization in reverse osmosis processes. Desalination 2005; 186: 111-128. http://dx.doi.org/10.1016/j.desal.2005.05.017

Sherwood TK, Brian PLT, Fisher RE, Dresner L. Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis. Industrial & Engineering Chemistry Fundamentals 1965; 4: 113-118. http://dx.doi.org/10.1021/i160014a001

Mulder M. Basic Principles of Membrane Technology, 2nd Edition, Springer 1996. http://dx.doi.org/10.1007/978-94-009-1766-8

Dresner L, Johnson JS. Hyperfiltration (Reverse Osmosis) in: Spiegler, K.S., and A.D.K. Laird, Principles of Desalination, 2nd edition, Academic Press 1980.

Nagy E, Kulcsar E, Nagy A. Membrane mass transport by nanofiltration: Coupled effct of the polarization and membrane layers. Journal of Membrane Science 2011; 368: 215-222. http://dx.doi.org/10.1016/j.memsci.2010.11.046

Rohani R, Hyland M, Patterson D. A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science. 2011; 382: 278-290. http://dx.doi.org/10.1016/j.memsci.2011.08.023

Mohammad AW, Hilal N, Al-Zoubi H, Darwish NA. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science 2007; 289: 40-50. http://dx.doi.org/10.1016/j.memsci.2006.11.035

Nicolas S, Balannec B, Beline F, Bariou B. Ultrafiltration and reverse osmosis of small non-charged molecules: a comparison study of rejection in a stirred and unstirred batch cell. Journal of Membrane Science 2000; 164: 141-155. http://dx.doi.org/10.1016/S0376-7388(99)00191-X

Nakao S, Kimura S. Analysis of solutes rejection in ultrafiltration. Journal of Chemical Engineering of Japan 1981; 14: 32-37. http://dx.doi.org/10.1252/jcej.14.32

Bowen WR, Mohammad AW. Diafiltration by nanofiltration: Prediction and optimization. AIChE Journal 1998; 44: 1799-1812. http://dx.doi.org/10.1002/aic.690440811

Rautenbach R, Albrecht R. Membrane Processes, John Wiley, Chichester 1994.

Opong WS, Zydney AL. Diffusive and convective protein transport through asymmetric membranes. AIChE Journal 1991; 37: 1497-1510. http://dx.doi.org/10.1002/aic.690371007

Nguyen QT, Aptel P, Neel J. Characterization of UF membranes, Part II. Mass transport measurements for low and high molecular weight synthetic polymer in water solution. Journal of Membrane Science 1980; 7: 141-155. http://dx.doi.org/10.1016/S0376-7388(00)80078-2

De S, Battacharya PK. Prediction of mass-transfer coefficient with suction in the applications of reverse osmosis and ultrafiltration. Journal of Membrane Science 1997; 128: 119-131. http://dx.doi.org/10.1016/S0376-7388(96)00313-4

Minnikanti VS, DasGupta S, De S. Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration. Journal of Membrane Science 1999; 157: 227-239. http://dx.doi.org/10.1016/S0376-7388(98)00371-8

Geraldes V, Dina-Afonso M. Generalized mass-transfer correction factor for nanofiltration and reverse osmosis. AIChE J 2006; 52: 3353-3362. http://dx.doi.org/10.1002/aic.10968

Malone DM, Anderson JL. Diffusional boundary-layer resistance for membranes with low porosity. AIChE Journal 1977; 23: 177-184. http://dx.doi.org/10.1002/aic.690230206

Bowen WR, Mukhtar H. Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science 1996; 112: 263-274. http://dx.doi.org/10.1016/0376-7388(95)00302-9

Bowen WR, Mohammad AW, Hilal N. Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science 1997; 126: 91-105. http://dx.doi.org/10.1016/S0376-7388(96)00276-1

van der Berg GB, Racz IG, Smolders CA. Mass transfer coefficients in cross-flow ultrafiltration. Journal of Membrane Science 1989; 47: 25-51. http://dx.doi.org/10.1016/S0376-7388(00)80858-3

Causserand C, Rouaix S, Akbari A, Aimar P. Improvement of a method for the characterization of ultrafiltration membranes by measurements of tracers retention. Journal of Membrane Science 2004; 238: 177-190. http://dx.doi.org/10.1016/j.memsci.2004.04.003

Oatley DL, Llenas L, Perez R, Williams PM, Martínez-Lladó X, Rovira M. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Advances in Colloid and Interface Science 2012; 173: 1-11. http://dx.doi.org/10.1016/j.cis.2012.02.001

Millipore Corporation. Stirred Ultrafiltration Cells User Guide 2008, Available at: https://www.millipore.com/userguides.nsf/ a73664f9f981af8c852569b9005b4eee/e7e01888faba2f89852574dc00818382/$FILE/99228.pdf

Sterlitech Corporation, HP4750 Stirred Cell Assembly and Operation Manual, Available at: https://www.sterlitech.com/ media/wysiwyg/pdfs/HP4750_Manual_V2013-Final.pdf

Bowen WR, Cassey B, Jones P, Oatley DL. Modelling the performance of membrane nanofiltration – application to an industrially relevant separation. Journal of Membrane Science 2004; 242: 211-220. http://dx.doi.org/10.1016/j.memsci.2004.04.028

Downloads

Published

2016-02-23

How to Cite

Oatley-Radcliffe, D. L., Williams, S. R., Lee, C., & Williams, P. M. (2016). Characterisation of Mass Transfer in Frontal Nanofiltration Equipment and Development of a Simple Correlation. Journal of Membrane and Separation Technology, 4(4), 149–160. https://doi.org/10.6000/1929-6037.2015.04.04.1

Issue

Section

Articles