Colloidal Silicalite Coating for Improving Ionic Liquid Membrane Loading on Macroporous Ceramic Substrate for Gas Separation

Authors

  • Zishu Cao Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
  • Shaowei Yang Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
  • Xinhui Sun Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
  • Antonios Arvanitis Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
  • Junhang Dong Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA

DOI:

https://doi.org/10.6000/1929-6037.2016.05.01.3

Keywords:

Colloidal silicalite, ionic liquid, membrane, carbon dioxide, separation

Abstract

A thin layer of colloidal silicalite was coated on a macroporous alumina substrate to improve the effectiveness in loading and supporting ionic liquid (IL) membrane on macroporous ceramic substrate. The [bmim][BF4] IL and CO2 gas separation were used as the model system in this research. The colloidal silicalite top layer enabled the formation of a pinhole-free IL membrane with significantly reduced load of IL as compared to the bare alumina substrate because the former had a smaller and more uniform inter-particle pore size than the latter. The supported IL membrane was extensively studied for CO2 separation in conditions relevant to coal combustion flue gases. The silicalite-supported IL membrane achieved a CO2/N2 permselectivity of ~24 with CO2 permeance of ~1.0×10-8 mol/m2·s·Pa in dry conditions at 26˚C and reached a CO2/N2 separation factor of ~18 with CO2 permeance of ~1.56×10-8 mol/m2·s·Pa for a feed mixture containing ~11% CO2 and ~9% water vapor at 50oC. This supported IL membrane exhibited excellent stability under a 5-bar transmembrane pressure at 103˚C and chemical resistance to H2O, SO2, and air (O2). Results of this study also indicated that, in order to fully realize the advantages of using the colloidal silicalite support for IL membranes, it is necessary to develop macroporous ceramic supports with optimized pore size distribution so that the IL film can be retained in the micron-thin silicalite layer without penetrating into the base substrate.

References

Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program. J Intl Greenhouse Gas Control 2008; 2: 9-20. http://dx.doi.org/10.1016/S1750-5836(07)00094-1

Zhai H, Rubin ES. Comparative Performance and Cost Assessments of Coal and Natural Gas fired Power Plants under a CO2 Emission Performance Standard Regulation. Energy Fuels 2013; 27: 4290-4301. http://dx.doi.org/10.1021/ef302018v

Zhang X, He X, Gundersen T. Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy Fuels 2013; 27: 4137-4149. http://dx.doi.org/10.1021/ef3021798

Privalova EI, MaÈ ki-Arvela P, Murzin DY, Mikkola JP. Capturing CO2: conventional versus ionic-liquid based technologies. Russ Chem Rev 2012; 81: 435-457. http://dx.doi.org/10.1070/RC2012v081n05ABEH004288

Anderson JL, Dixon JK, Maginn EJ, Brennecke JF. Measurement of SO2 solubility in ionic liquids. J Phys Chem B 2006; 110: 15059-15062. http://dx.doi.org/10.1021/jp063547u

Ramdin M, de Loos TW, Vlugt TJH. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind. Eng Chem Res 2012; 51: 8149-8177. http://dx.doi.org/10.1021/ie3003705

Iarikov DD, Hacarlioglu P, Oyama ST. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chem Eng J 2011; 166: 401-406. http://dx.doi.org/10.1016/j.cej.2010.10.060

Kim DH, Baek IH, Hong SU, Lee HK. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. J Membr Sci 2011; 372: 346-354. http://dx.doi.org/10.1016/j.memsci.2011.02.025

Wickramanayake S, Hopkinson D, Myers C, Sui L, Luebke D. Investigation of transport and mechanical properties of hollow fiber membranes containing ionic liquids for pre-combustion carbon dioxide capture. J Membr Sci 2013; 439: 58-67. http://dx.doi.org/10.1016/j.memsci.2013.03.039

Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J Chem Eng Data 2004; 49: 954-964. http://dx.doi.org/10.1021/je034261a

Tang Z, Kim SJ, Gu X, Dong J. Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents. Micropor Mesopor Mater 2009; 118: 224-231. http://dx.doi.org/10.1016/j.micromeso.2008.08.029

Vroon ZAEP. Synthesis and transport properties of thin ceramic supported zeolite (MFI) membranes, Ph.D. Dissertation, University of Twente, The Netherlands 1995.

Kim SJ, Xu Z, Reddy GK, Smirniotis P, Dong J. Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor. Ind Eng Chem Res 2012; 51: 1364-1375. http://dx.doi.org/10.1021/ie201452y

Gong YN, Wang HT, Chen YF, Hu XH, Ibrahim AR, Tanyi AR, Hong YZ, Su YZ, Li J. A High-Pressure Quartz Spring Method for Measuring Solubility and Diffusivity of CO2 in Ionic Liquids. Ind Eng Chem Res 2013; 52: 3926-3932. http://dx.doi.org/10.1021/ie400267h

Gu X, Tang Z, Dong J. On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature. Micropor Mesopor Mater 2008; 111: 441-448. http://dx.doi.org/10.1016/j.micromeso.2007.08.039

Shiflett MB, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids: bmim PF6 and bmim BF4. Ind Eng Chem Res 2005; 44: 4453-4464. http://dx.doi.org/10.1021/ie058003d

Hazelbaker ED, Guillet-Nicolas R, Thommes M, Kleitz F, Vasenkov S. Influence of confinement in mesoporous silica on diffusion of a mixture of carbon dioxide and an imidazolium-based ionic liquid by high field diffusion NMR. Micropor Mesopor Mater 2015; 206: 177-183. http://dx.doi.org/10.1016/j.micromeso.2014.12.005

Jindaratsamee P, Ito A, Komuro S, Shimoyama Y. Separation of CO2 from the CO2/N2 mixed gas through ionic liquid membranes at the high feed concentration. J Membr Sci 2012; 423: 27-32. http://dx.doi.org/10.1016/j.memsci.2012.07.012

Jue ML, Lively, RP. Targeted gas separations through polymer membrane functionalization. React Funct Polym 2015; 88-110. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.002

Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture-Development and progress. Chem Eng Process 2010; 49: 313-322. http://dx.doi.org/10.1016/j.cep.2010.03.008

Zhao W, He GH, Zhang LL, Ju J, Dou H, Nie F, Li CN, Liu HJ. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2. J Membr Sci 2010; 350: 279-285. http://dx.doi.org/10.1016/j.memsci.2010.01.002

Okabe K, Matsumiya N, Mano H. Stability of gel-supported facilitated transport membrane for carbon dioxide separation from model flue gas. Sep Purif Technol 2007; 57: 242-249. http://dx.doi.org/10.1016/j.seppur.2007.04.007

Huang J, Riisager A, Wasserscheid P, Fehrmann R. Reversible physical absorption of SO2 by ionic liquids. Chem Commun 2006; 4027-4029. http://dx.doi.org/10.1039/B609714F

Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angew Chem Int Ed 2004; 43: 2415-2417. http://dx.doi.org/10.1002/anie.200353437

Andanson JM, Jutz F, Baiker A. Purification of ionic liquids by supercritical CO2 monitored by infrared Spectroscopy. J Supercrit Fluids 2010; 55: 395-400. http://dx.doi.org/10.1016/j.supflu.2010.08.012

Downloads

Published

2016-04-06

How to Cite

Cao, Z., Yang, S., Sun, X., Arvanitis, A., & Dong, J. (2016). Colloidal Silicalite Coating for Improving Ionic Liquid Membrane Loading on Macroporous Ceramic Substrate for Gas Separation. Journal of Membrane and Separation Technology, 5(1), 25–37. https://doi.org/10.6000/1929-6037.2016.05.01.3

Issue

Section

Special Issue : Membranes for Carbon Dioxide Separation / Capture Applications