Full-Factorial Experimental Design to Determine the Impacts of Influential Parameters on the Porosity and Mechanical Strength of LLDEP Microporous Membrane Fabricated via Thermally Induced Phase Separation Method

Authors

  • Elham Shokri Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, Post Box: 51335/1996, Tabriz, Iran
  • Reza Yegani Membrane Technology Research Center, Sahand University of Technology, Sahand New Town, Post Box: 51335/1996y, Tabriz, Iran

DOI:

https://doi.org/10.6000/1929-6037.2012.01.01.6

Keywords:

Thermally induced phase separation (TIPD), Design of experiments, Linear low density polyethylene (LLDPE), Porosity, Mechanical strength

Abstract

Membrane separation processes have a wide application in liquid and gas purification industries. They enjoy advantages such as convenient processibility, easy and lower production and operational costs. Thermally induced phase separation (TIPS) process, due to its wide advantages, has won special attention in recent decades. In this process, a homogenous solution of polymer-diluent at a temperature above the polymer melting point is formed and the solution is then cast in the favorite shape. In order to create a porous structure, the diluent is extracted. In this work, microporous LLDPE membrane is fabricated and full factorial experimental design is used to evaluate the individual as well as mutual impacts of polymer concentration, membrane thickness and cooling bath temperature on the porosity and mechanical strength of the membrane. The results obtained from the analysis of variance of membrane porosity and mechanical strength, showed that the impact of cooling bath temperature is much more important than polymer concentration and membrane thickness. Higher cooling bath temperature, lower polymer concentration and membrane thickness result in higher porosity.

References

Mulder M. Basic principles of membrane technology. 2nd ed. Kluwer academic publishers: Netherlands 1996. http://dx.doi.org/10.1007/978-94-009-1766-8

Witte P, Dijkstra PJ, Berg JW, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 1996; 117: 1-31. http://dx.doi.org/10.1016/0376-7388(96)00088-9

Tsai F, Torkelson J. Microporous Poly(methyl methacrylate) Membranes: Effect of a Low-Viscosity Solvent on the Formation Mechanism. J Macromol 1990; 23: 4983-9. http://dx.doi.org/10.1021/ma00225a018

Pusch W, Walch A. Synthetic membranes preparation, structure and application. J GDCH 2003; 21(9): 660-85.

Drioli E, Criscuoli A, Curcio E. Membrane contactors: fundamentals, applications and potentialities. 1st ed. elsevier: Netherlands 2006.

Lloyd R, Kim SS, Kinzer KE. Microporous membrane formation via thermally induced phase separation, II. Liquid-liquid phase separation. J Membr Sci1991; 64: 1-11. http://dx.doi.org/10.1016/0376-7388(91)80073-F

Nunes SP, Peinemann V. Membrane technology in the chemical industry, Wiley-VCH 2001. http://dx.doi.org/10.1002/3527600388

Sarif M, Mohd A. Development of the integrally skinned polysulfone ultrafiltration membrane: effect of casting parameters. PhD thesis, Universiti Sains Malaysia 2005.

Lloyd R. Microporous membrane formation via thermally induced phase separation.solid-liquid phase separation. J Membr Sci1990; 52: 239-61. http://dx.doi.org/10.1016/S0376-7388(00)85130-3

Castro AJ. Methods for making microporous products in US Patent. 4247498 1981.

Song SW, Torkelson JM. Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J Membr Sci 1995; 98: 209-22. http://dx.doi.org/10.1016/0376-7388(94)00189-6

Tsai HA, Kuo CY, Lin JH, et al. Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation. J Membr Sci 2006; 278(1-2): 390-400. http://dx.doi.org/10.1016/j.memsci.2005.11.029

Matsuyama H, Ohga K, Maki T, Teramoto M, Nakatsuka S. Porous cellulose acetate membrane prepared by thermally induced phase separation. J Poly Sci 2003; 89(14): 3951-55.

Lima JA, Felisberti MI. Porous polymer structures obtained via the TIPS process from EVOH/PMMA/DMF solutions. J Membr Sci 2009; 344(1-2): 237-43. http://dx.doi.org/10.1016/j.memsci.2009.08.008

Kim SS, Lloyd R. Microporous membrane formation via thermally induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci 1991; 64: 13-29. http://dx.doi.org/10.1016/0376-7388(91)80074-G

Kim SS, Gordon BA, Alwattari AA, Wang YF, Lloyd R. Microporous membrane formation via thermally induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes. J Membr Sci 1991; 64: 41-53. http://dx.doi.org/10.1016/0376-7388(91)80076-I

Lim BA, Kim SS, Ye Q, Wang YF, Lloyd R, Microporous membrane formation via thermally induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J Membr Sci 1991; 64: 31-40. http://dx.doi.org/10.1016/0376-7388(91)80075-H

Lin YK, Chen G, Yang J, Wang XL. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination 2009; 236(1-3): 8-15. http://dx.doi.org/10.1016/j.desal.2007.10.044

Luo B, Li Z, Zhang J, Wang X. Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination 2008; 233(1-3): 19-31. http://dx.doi.org/10.1016/j.desal.2007.09.023

Alwattari AA, Lloyd R. Microporous membrane formation via thermally induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure. J Membr Sci 1991; 64: 55-68. http://dx.doi.org/10.1016/0376-7388(91)80077-J

Yang ZS, Li PL, Xie LX, Wang Z, Wang SC. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination 2006; 192: 168-81. http://dx.doi.org/10.1016/j.desal.2005.10.016

Yave W, Quijad R, Serafini D. Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process: Part I. Metallocene and Ziegler-Natta polypropylenes. J Membr Sci 2005; 263(1-2): 146-53. http://dx.doi.org/10.1016/j.memsci.2005.04.043

Matsuyama H, Maki T, Teramoto M, Asono K. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J Membr Sci 2002; 204(1-2): 323-8. http://dx.doi.org/10.1016/S0376-7388(02)00056-X

Matsuyama H, Yuasa M, Kitamura Y, Teramoto M, Lloyd R. Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation. J Membr Sci 2000; 179(1-2): 91-100. http://dx.doi.org/10.1016/S0376-7388(00)00506-8

Gu M, Zhang J, Wang X, Tao H, Ge L. Formation of poly (vinylidene fluoride) (PVDF) membranes via thermally induced phase separation. Desalination 2006; 192(1-3): 160-7. http://dx.doi.org/10.1016/j.desal.2005.10.015

Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK. Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 2008; 325(2): 957-63. http://dx.doi.org/10.1016/j.memsci.2008.09.022

Rajabzadeh S, Maruyama T, Ohmukari Y, Sotani T, Matsuyama H. Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Sep Purif Technol 2009; 66(1): 76-83. http://dx.doi.org/10.1016/j.seppur.2008.11.021

Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. J Membr Sci 2003; 223(1-2): 119-26. http://dx.doi.org/10.1016/S0376-7388(03)00314-4

Zhang C, Bai Y, Sun Y, Gu J, Xu Y. Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer. J Membr Sci 2010; 365(1-2): 216-24. http://dx.doi.org/10.1016/j.memsci.2010.09.007

Qiu YR, Rahman NA, Matsuyama H. Preparation of hydrophilic poly(vinyl butyral)/Pluronic F127 blend hollow fiber membrane via thermally induced phase separation. Sep Purif Technol 2008; 61(1): 1-8. http://dx.doi.org/10.1016/j.seppur.2007.09.014

Roh IJ, Ramaswang S, Krantz WB, Greenberg AR. Poly(ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS). J Membr Sci 2010; 362(1-2): 211-20. http://dx.doi.org/10.1016/j.memsci.2010.06.042

Qiu Y, Hideto M, Zhong H, Ye H, Huang K. Effects of diluent molecular weight on the performance of hydrophilic poly(vinyl butyral)/Pluronic F127 blend hollow fiber membrane via thermally induced phase separation. J Membr Sci 2009; (2-1)338: 128-34.

Cha IJ, Char K, Kim JJ. The effect of diluent molecular weight on the structure of thermally induced phase separation membrane. J Membr Sci 1995; 108: 219-29. http://dx.doi.org/10.1016/0376-7388(95)00171-9

Yang Z, Li P, Chang H, Wang S. Effect of diluent on the morphology and performance of IPP hollow fiber microporous membrane via thermally induced phase separation. J Chin Chem Eng 2006; 14(3): 394-7. http://dx.doi.org/10.1016/S1004-9541(06)60089-X

Zhang J, Fu J, Wang X, Wang B, Xu Z, Wen J. Effect of diluents on hydrophilic ethylene-acrylic acid co-polymer membrane structure via thermally induced phase separation. Desalination 2006; 192(1-3): 151-9. http://dx.doi.org/10.1016/j.desal.2005.10.014

Qiu YR, Matsuyama H. Preparation and characterization of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation with diluent polyethylene glycol 200. Desalination 2010; 257(1-3): 117-23. http://dx.doi.org/10.1016/j.desal.2010.02.036

Fu X, Matsuyama H, Teramato M, Nagai H. Preparation of hydrophilic poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation. Sep Purif Technol 2005; 45(3): 200-7. http://dx.doi.org/10.1016/j.seppur.2005.04.012

Tang N, Jia Q, Zhang H, Li J, Cao S. Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination 2010; 256(1-3): 27-36. http://dx.doi.org/10.1016/j.desal.2010.02.024

Shang M, Matsuyama H, Teramoto M, Lloyd R, Kubota N. Effect of glycerol content in cooling bath on performance of poly(ethylene-co-vinyl alcohol) hollow fiber membranes. Sep Purif Technol 2005; 45(3): 208-12. http://dx.doi.org/10.1016/j.seppur.2005.04.013

Zhou J, Zhang H, Wang H, Du Q. Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. J Membr Sci 2009; 343(1-2): 104-9. http://dx.doi.org/10.1016/j.memsci.2009.07.029

Luo B, Zhang J, Wang X, Zhou Y, Wen J. Effects of nucleating agents and extractants on the structure of polypropylene microporous membranes via thermally induced phase separation. Desalination 2006; 192(1-3): 142-50. http://dx.doi.org/10.1016/j.desal.2005.10.013

Montgomery DC. Design and Analysis of Experiments, John Wiley & Sons Australia, Limited 1999.

Downloads

Published

2012-10-05

How to Cite

Shokri, E., & Yegani, R. (2012). Full-Factorial Experimental Design to Determine the Impacts of Influential Parameters on the Porosity and Mechanical Strength of LLDEP Microporous Membrane Fabricated via Thermally Induced Phase Separation Method. Journal of Membrane and Separation Technology, 1(1), 43–51. https://doi.org/10.6000/1929-6037.2012.01.01.6

Issue

Section

Articles