Molecularly Imprinted Chitin Nanofiber Membranes: Multi-Stage Cascade Membrane Separation within the Membrane

Authors

  • Kenta Shiomi Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
  • Masakazu Yoshikawa Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan

DOI:

https://doi.org/10.6000/1929-6037.2016.05.03.3

Keywords:

Cascade separation, Chitin, Chiral separation, Molecularly imprinted membrane, Molecular imprinting, Multi-stage cascade membrane separation, Nanofiber, Optical resolution

Abstract

Molecularly imprinted nanofiber membranes were fabricated from chitin and print molecule of phenylalanine derivative by simultaneously applying an alternative molecular imprinting and an electrospinning. The D-enantiomer imprinted nanofiber membrane preferentially incorporated the D-enantiomer and selectively transported D-enantiomer and vice versa. The permselectivity was exponentially increased with the increase in the membrane thickness, implying that multi-stage cascade membrane separation was carried out within the nanofiber membrane. The present study led to the conclusion that a molecularly imprinted nanofiber membrane is one of suitable membrane forms for the separation membrane with relatively high flux and permselectivity.

References

Chu B, Hsiao BS. The role of polymers in breakthrough technologies for water purification. J Polym Sci: Part B: Polym Phys 2009; 47: 2431-5. http://dx.doi.org/10.1002/polb.21854

Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A 2001; 187-188: 469-81. http://dx.doi.org/10.1016/S0927-7757(01)00616-1

In the case of nanofiber membrane, its morphology is porous. From this, incorporation of substrate into the membrane is called “partition” rather than “solution” in the present study.

Polyakov MV. Adsorption properties of silica gel and its structure. Zhur Fiz Khim 1931; 2: 799-805.

Dickey FH. The preparation of specific adsorbents. Proc Natl Acd Sci USA 1949; 35: 227-9. http://dx.doi.org/10.1073/pnas.35.5.227

Dickey FH. Specific adsorption. J Phys Chem 1955; 59: 695-707. http://dx.doi.org/10.1021/j150530a006

Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 1972; 11: 341. DOI: 10.1002/anie.197203341

[Über die anwendung von enzyme gebauten polymeren zur racemettrennung. Angew Chem 1972; 84: 364]. DOI: 10.1002/ange.19720840838

Bartsch RA, Maeda M, Eds. Molecular and ionic recognition with imprinted polymers (ACS Symposium Series 703). Washington DC: ACS 1998.

Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 2000; 100: 2495-504. http://dx.doi.org/10.1021/cr990099w

Sellergren B Ed. Molecularly imprinted polymers. Man-made mimics of antibodies and their applications in analytical chemistry. Amsterdam: Elsevier 2000.

Alexander C, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 2006; 19: 106-80. http://dx.doi.org/10.1002/jmr.760

Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27: 297-401. http://dx.doi.org/10.1002/jmr.2347

Michales AS, Baddour RF, Bixler HJ, Choo CY. Conditioned polyethylene as a permselective membrane Separation of isomeric xylenes. Ind Eng Chem Process Des Dev 1962; 1: 14-25. http://dx.doi.org/10.1021/i260001a003

Yoshikawa M. Molecularly imprinted polymeric membranes for optical resolution. in Bartsch RA, Maeda M, Eds. Molecular and ionic recognition with imprinted polymers (ACS Symposium Series 703). Washington DC: ACS 1998, pp. 170-187.

Yoshikawa M. Molecularly imprinted polymeric membranes. Bioseparation 2002; 10: 277-86. http://dx.doi.org/10.1023/A:1021537602663

Chronakis IS, Jakob A, Hagström B, Ye L. Encapsulation and selective recognition of molecularly imprinted theophylline and 17-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 2006; 22: 8960-5. http://dx.doi.org/10.1021/la0613880

Yoshimatsu K, Ye L, Lindberg J, Chronakis IS. Selective moleculer adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 2008; 23: 1208-15. http://dx.doi.org/10.1016/j.bios.2007.12.002

Chronakis IS, Milosevic B, Frenot A, Ye L. Generation of molecular recognition sites in electrospun polymer nanofibers via moleculer imprinting. Macromolecules 2006; 39: 357-61. http://dx.doi.org/10.1021/ma052091w

Yoshikawa M, Tanioka A, Matsumoto H. Molecularly imprinted nanofiber membranes. Curr Opin Chem Eng 2011; 1: 18-26. http://dx.doi.org/10.1016/j.coche.2011.07.003

Yoshikawa M, Higuchi A. Enantioselective membranes in Hoek EMV, Tarabara VV, Eds. Encyclopedia of membranes and technology. New York: Wiley 2013. DOI: 10.1002/9781118522318.emst131

Yoshikawa M, Nakai K, Matsumoto H, Tanioka A, Guiver MD, Robertson GP. Molecularly imprinted nanofiber membranes from carboxylated polysulfone by electrospray deposition. Macromol Rapid Commun 2007; 28: 2100-5. http://dx.doi.org/10.1002/marc.200700359

Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membr Sci 2010; 357: 90-7. http://dx.doi.org/10.1016/j.memsci.2010.04.005

Shiomi K, Yoshikawa M. Multi-stage chiral separation with electrospun chitin nanofiber membranes. Sep Purif Technol 2013; 118: 300-4. http://dx.doi.org/10.1016/j.seppur.2013.07.004

Kawasaki T, Yoshikawa M. Nanofiber membranes from cellulose triacetate for chiral separation. Desal Water Treat 2013; 51: 5080-8. http://dx.doi.org/10.1080/19443994.2013.768832

Mizushima H, Yoshikawa M, Li N, Robertson GP, Guiver MD. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur Polym J 2012; 48: 1717-25. http://dx.doi.org/10.1016/j.eurpolymj.2012.07.003

Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific 2005.

Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007; 46: 5670-703. http://dx.doi.org/10.1002/anie.200604646

Matsumoto H, Tanioka A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 2011; 1: 249-64. http://dx.doi.org/10.3390/membranes1030249

Yoshikawa M, Izumi J. Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules. Macormol Biosci 2003; 3: 487-98. http://dx.doi.org/10.1002/mabi.200350016

Yoshikawa M, Ooi T, Izumi J. Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci 1999; 72: 493-9. http://dx.doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U

Yoshikawa M, Koso K, Yonetani K, Kitamura S, Kimura S. Optical resolution of amino acid derivatives with molecularly imprinted membranes bearing oligopeptide tweezers. J Polym Sci: Part A: Polym Chem 2005; 43: 385-96. http://dx.doi.org/10.1002/pola.20504

Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea with L-lysinyl residues as components: Application to membrane separateon of enantiomers. Macromol Chem Phys 2011; 212: 1351-9. http://dx.doi.org/10.1002/macp.201100054

Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea bearing L-lysinyl residue as a chiral building block and its application to optical resolution. J Mater Sci Res 2012; 1(No. 4): 114-22. http://dx.doi.org/10.5539/jmsr.v1n4p114

Hatanaka M, Nishioka Y, Yoshikawa M. Chiral polyurea with L-lysinyl residue aimed for optical resolution. J Membr Sci Technol 2013; 2: 109-19. http://dx.doi.org/10.6000/1929-6037.2013.02.02.1

Hatanaka M, Nishioka Y, Yoshikawa M. Chiral separation with polyurea membrane consisting of L-lysinyl residue; Proposal of facile method for prediction of permselectivity. J Appl Polym Sci 2013; 128: 123-31. http://dx.doi.org/10.1002/app.38141

Yoshikawa M, Izumi J, Ooi T, Kitao T, Guiver MD, Robertson GP. Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polym Bull 1998; 40: 517-24. http://dx.doi.org/10.1007/s002890050285

Kondo Y, Yoshikawa M, Okushita H. Molecularly imprinted polyamidee membranes for chiral recognition. Polym Bull 2000; 44: 517-24. http://dx.doi.org/10.1007/s002890070073

Taniwaki K, Hyakutake A, Aoki T, Yoshikawa M, Guiver MD, Robertson GP. Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy. Anal Chim Acta 2003; 489: 191-8. http://dx.doi.org/10.1016/S0003-2670(03)00760-8

Sun Y, Li L-Y, Dong X-Y. Multistage affinity ross-flow filtration: process optimization. Bioprocess Eng 1997; 16: 229-35. http://dx.doi.org/10.1007/s004490050313

Romero J, Zydney AL, Staging of affinity ultrafiltration processes for chiral separation. J Membr Sci 2002; 209: 107-19. http://dx.doi.org/10.1016/S0376-7388(02)00283-1

Higuchi A, Higuchi Y, Furuta K, Yoon BO, Hara M, Maniwa S, Saitoh M, Sanui K. Chiral separateon of phenyl by ultrafiltration through immobilized DNA membranes. J Membr Sci 2003; 221: 207-18. http://dx.doi.org/10.1016/S0376-7388(03)00263-1

Downloads

Published

2016-10-25

How to Cite

Shiomi, K., & Yoshikawa, M. (2016). Molecularly Imprinted Chitin Nanofiber Membranes: Multi-Stage Cascade Membrane Separation within the Membrane. Journal of Membrane and Separation Technology, 5(3), 103–114. https://doi.org/10.6000/1929-6037.2016.05.03.3

Issue

Section

Articles