Zeolite A-Carbon Membranes: Possibilities in H2 Purification and how to Overcome their Shortcomings

Authors

  • Francisco J. Varela-Gandía Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain
  • Dolores Lozano-Castelló Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain
  • Diego Cazorla-Amorós Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain
  • Ángel Berenguer-Murcia Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain

DOI:

https://doi.org/10.6000/1929-6037.2016.05.04.1

Keywords:

Zeolite, membranes, hydrogen purification, fuel cells.

Abstract

This work describes the modification of zeolite Na-LTA membranes supported on macroporous carbon materials, prepared by a combination of secondary hydrothermal treatment followed by different alternative post-synthesis procedures, which aim at improving the permeance properties of the as-synthesized Na-LTA membranes with a simulated reformer mixture (H2, CO, CO2 and H2O) towards their use in a hydrogen purification device.These post-synthetic treatments include the deposition of a thin layer of amorphous silica formed by the hydrolysis of a silicon alcoxide, the coating with a thin metallic film by electroless plating, and the deposition of noble metal nanoparticles. Our results indicate that some of these treatments, which may be performed very quickly compared to other treatments which are generally used in order to improve the quality of the membranes, result in membranes which may effectively separate H2 from CO under simulated reformer conditions. Considering the simple approach employed in some of the cases described in this study, the potential benefits should be considered highly interesting in fields such as membrane recovery and membrane selectivity control.

References

Mintova S, Valtchev V. Deposition of zeolite A on vegetal fibers. Zeolites 1996; 16: 31-34. https://doi.org/10.1016/0144-2449(95)00078-X

Suzuki H, inventor, Suzuki H. assignee, Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof, United States Patent US4,699,892. 1987 Oct.

Morigami Y, Kondo M, Abe J, Kita H, Okamoto K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Tech 2001; 25: 251-260. https://doi.org/10.1016/S1383-5866(01)00109-5

Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 2003; 300: 456-460.

Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O. New material needs for hydrocarbon fuel processing: Generating Hydrogen for the PEM Fuel Cell. Annu Rev Mater Res 2003; 33: 1-27. https://doi.org/10.1146/annurev.matsci.33.022802.091348

Sebastián V, Lin Z, Rocha J, Tellez C, Santamaria J, Coronas J. Improved Ti-silicate umbite membranes for the separation of H2. J Membr Sci 2008; 323: 207-212. https://doi.org/10.1016/j.memsci.2008.06.033

Amin AM, Croiset E, Epling W. Review of methane catalytic cracking for hydrogen production. Intl J Hydrogen Energy 2011; 36(4): 2904-2935. https://doi.org/10.1016/j.ijhydene.2010.11.035

Gardner TQ, Martinek JG, Falconer JL, Noble RD. Enhanced flux through double-sided zeolite membranes. J Membr Sci 2007; 304: 112-117. https://doi.org/10.1016/j.memsci.2007.07.024

Xu X, Yang W, Liu J, Lin L. Synthesis of a High-PermeanceNaA Zeolite Membrane by Microwave Heating. Adv Mater 2000; 12(3): 195-198. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E

Varela-Gandía FJ, Berenguer-Murcia A, Lozano-Castelló D, Cazorla-Amorós D. Hydrogen purification for PEM fuel cells using membranes prepared by ion-exchange of Na-LTA/carbon membranes. J Membr Sci 2010; 351: 123-130. https://doi.org/10.1016/j.memsci.2010.01.039

Varela-Gandía FJ, Berenguer-Murcia A, Lozano-Castelló D, Cazorla-Amorós D. Zeolite A/carbon membranes for H2 purification from a simulated gas reformer mixture. J Membr Sci 2011; 378: 407-414. https://doi.org/10.1016/j.memsci.2011.05.026

Domínguez-Domínguez S, Berenguer-Murcia A, Morallón E, Linares-Solano A, Cazorla-Amorós D. Zeolite LTA/carbon membranes for air separation. Microporous Mesoporous Materials 2008; 115: 51-60. https://doi.org/10.1016/j.micromeso.2007.11.049

Kunkeler PJ, Moeskops D, van Bekkum H. Zeolite Beta: characterization and passivation of the external surface acidity. Microporous Mater 1997; 11(5,6): 313-323.

Domínguez-Domínguez S, Berenguer-Murcia A, Cazorla-Amorós D, Linares-Solano A. Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals. J Catal 2006; 243: 74-81. https://doi.org/10.1016/j.jcat.2006.06.027

Yeung KL, Christiansen SC, Varma A. Palladium composite membranes by electroless plating technique: Relationships between plating kinetics, film microstructure and membrane performance. J Membr Sci 1999; 159(1-2): 107-122. https://doi.org/10.1016/S0376-7388(99)00041-1

De Robertis E, Abrantes LM, Motheo AJ. The influence of experimental parameters on the structure, morphology and electrochemical behavior of Pd–P thin films prepared by electroless deposition. Thin Solid Films 2008; 516: 6266-6276. https://doi.org/10.1016/j.tsf.2007.11.121

Berenguer-Murcia A, Morallón E, Cazorla-Amorós D, Linares-Solano A. Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods. Microporous Mesoporous Mater 2003; 66: 331-340. https://doi.org/10.1016/j.micromeso.2003.09.022

Sea BK, Kusakabe K, Morooka S. Pore size control and gas permeation kinetics of silica membranes by pyrolisis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall. J Membr Sci 1997; 130: 41-52. https://doi.org/10.1016/S0376-7388(97)00002-1

van der Berg AWC, Bromley ST, Wojdel JC, Jansen JC. Adsorption isotherms of H2 in microporous materials with SOD structure: a grand canonical Monte Carlo study. Microporous Mesoporous Mater 2006; 87: 235-242. https://doi.org/10.1016/j.micromeso.2005.08.013

Kim SS, Sea BK. Gas permeation characteristics of Silica/Alumina composite membrane preparaed by chemical vapor deposition. Korean J Chem Eng 2001; 18: 322-329. https://doi.org/10.1007/BF02699172

Lee D, Zhang L, Oyama ST, Niu S, Saraf RF. Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. J Membr Sci 2004; 231: 117-126. https://doi.org/10.1016/j.memsci.2003.10.044

Hong Z, Wu Z, Zhang Y, Gu X. Catalytic cracking deposition of methyldiethoxysilane for modification of zeolitic pores in MFI/α-Al2O3 zeolite membrane with H+ ion exchange pretreatment. Ind Eng Chem Res 2013; 52: 13113-13119. https://doi.org/10.1021/ie4012563

Guo S, Yu C, Gu X, Jin W, Zhong J, Chen C-L. Simulation of adsorption, diffusion, and permeability of water and ethanol in NaA zeolite membranes. J Membr Sci 2011; 376: 40-49. https://doi.org/10.1016/j.memsci.2011.03.043

Khatib SJ, Oyama ST. Silica membranes for hydrogen separation by chemical vapor deposition (CVD). Separ Purif Tech 2013; 111: 20-42. https://doi.org/10.1016/j.seppur.2013.03.032

Farrauto R, Liu Y, Ruettinger W, Ilinich O, Shore L, Giroux T. Precious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy. Catal Rev 2007; 49(2): 141-196. https://doi.org/10.1080/01614940701220496

Chen HZ, Thong Z, Li P, Chung T-S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. Int J Hydrogen Energy 2014; 39: 5043-5053. https://doi.org/10.1016/j.ijhydene.2014.01.047

Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M, Kniep J, Merkel TC, Wu T, Lambrecht RC. CO2-selective membranes for hydrogen production and CO2 capture – Part I: Membrane development. J Membr Sci 2014; 457: 149-161. https://doi.org/10.1016/j.memsci.2014.01.020

Parsley D, Ciora RJ, Flowers DL, Laukaitaus J, Chen A, Liu PKT, Yu J, Sahimi M, Bonsu A, Tsotsis TT. Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. J Membr Sci 2014; 450: 81-92. https://doi.org/10.1016/j.memsci.2013.08.008

Cornaglia CA, Adrover ME, Múnera JF, Pedernera MN, Borio DO, Lombardo EA. Production of ultrapure hydrogen in a Pd-Ag membrane reactor using noble metals supported on La-Si oxides. Heterogeneous modeling for the water gas shift reaction. Int J Hydrogen Energy 2013; 38: 10485-10493. https://doi.org/10.1016/j.ijhydene.2013.05.043

Liu X, Christensen PA, Kelly SM, Rocher V, Scott K. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells. Membranes 2013; 3: 406-414. https://doi.org/10.3390/membranes3040406

Yang T, Chung T-S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int J Hydrogen Energy 2013; 38: 229-239. https://doi.org/10.1016/j.ijhydene.2012.10.045

Fischer M, Hoffmann F, Fröba M. Metal–organic frameworks and related materials for hydrogen purification: Interplay of pore size and pore wall polarity. RSC Advances 2012; 2: 4382-4396. https://doi.org/10.1039/c2ra01239a

Downloads

Published

2017-02-08

How to Cite

Varela-Gandía, F. J. ., Lozano-Castelló, D. ., Cazorla-Amorós, D. ., & Berenguer-Murcia, Ángel . (2017). Zeolite A-Carbon Membranes: Possibilities in H2 Purification and how to Overcome their Shortcomings. Journal of Membrane and Separation Technology, 5(4), 121–131. https://doi.org/10.6000/1929-6037.2016.05.04.1

Issue

Section

Articles