Pioglitazone Ameliorates Lipid Metabolic Disorder in KKA^y Mice

Sifan Chen^{1,2,#}, Qing Wei^{3,#}, Yanshuang Sun^{1,2}, Xincai Xiao^{1,2,4}, Zili Zhang^{1,2}, Liangru Ke⁵, Niman Zhou⁵, Zhiming Shan⁵, Xiang Feng^{1,2,*} and Wei Zhu^{4,*}

¹Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, China
²Faculty of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China;
³Faculty of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, PR China;
⁴Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, People’s Republic of China
⁵Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China

Abstract: Pioglitazone (pio) has been used as an effective hypoglycemic drug in medicine, however, the effects and mechanisms of pio on lipid metabolic disorder are still largely unknown. To explore the effects of pio on serum and liver lipid level and antioxidant ability of mice with lipid metabolic disorder, KKA^y mice were treated with pio for 12 weeks and their lipid and antioxidant indices were compared to those of KKA^y mice without pio treatment. C57BL/6J mice were used as control animals. The results show that pio treatment reduces serum and liver TG, elevates serum HDL-C level, increases serum and liver SOD activity, attenuates serum MDA content, ameliorates liver steatosis, induces liver PPAR<gamma> expression and enhances AMPKalpha phosphorylation level. In conclusion, the results indicate that pio could regulate blood lipid level, reduce liver lipid deposition and enhance antioxidant capacity of mice with lipid metabolic disorder, which is possibly through increasing AMPKalpha phosphorylation.

Keywords: Pioglitazone, lipid metabolic disorder, AMP-activated protein kinase.

1. INTRODUCTION

With the living standard improving and lifestyle changing, especially the dietary style altering and physical activity decreasing, incidence of non-alcoholic fatty liver disease (NAFLD) has been increasing. NAFLD is pathologically characterized by hepatic lipid deposition and its pathogenesis has not been well understood. Several animal studies have confirmed that thiazolidinediones (TZD) exert antioxidant ability and can prevent atherosclerosis [1]. As a derivative of TZD, pioglitazone (pio) can increase insulin sensitivity, therefore it has been widely used as anti-hyperglycemia agent in clinical medicine [2]. However, the effects and mechanisms of pio on lipid metabolic disorder remain largely unknown.

AMP-activated protein kinase (AMPK) is considered as metabolic energy sensor. It is closely related to insulin resistance and liver lipid content. Studies have suggested that AMPK activation lead to increase fatty acid oxidation in skeleton muscle possibly through activating co-activator 1 of PPARalpha or PPARgamma [3]. Pio can augment AMPK phosphorylation in liver tissue of rats fed with normal diet [4, 5]. Meanwhile, TZD as potent and highly selective PPARgamma agonists, can alter transcriptional activity of targeted genes via activation of PPARgamma including glucose transporter, insulin receptor and other factors related to energy balance and glucose metabolism [6].

Mouse KKA^y strain is a cross between black KK female mice and yellow male A^y mice. A^y gene not only affects mouse skin color, but also can lead to spontaneous energy metabolism disorder such as obesity, hyperglycemia, hyperlipidemia and hyperinsulinemia under normal diet. KKA^y mouse is widely used as an animal model in the studies of obesity and lipid metabolism while C57BL/6J mouse is used as control animals and considered to be "normal" one [7, 8]. The current study investigated the effects of pio on lipid metabolism and response to oxidative stress of KKA^y mice and explored its possible mechanisms.
2. MATERIALS AND METHODS

2.1. Materials

Pio hydrochloride was purchased from Jiangsu Hengrui Pharmaceuticals Co., Ltd, China. Assay kits for triglyceride (TG), cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), and malondialdehyde (MDA) were purchased from Nanjing Jiancheng Institute of Biotechnology, China. Rabbit monoclonal antibodies against PPARγ, AMPKα, and phospho-AMPKα at Thr172 were purchased from CST Company, USA. Rabbit monoclonal anti-GAPDH antibody was purchased from Wuhan Boster Company. BCA kit for protein measurement and HRP-conjugated anti-rabbit antibody were purchased from Shanghai Beyotime Company, China.

2.2. Animal Experiment

Twenty four SPF grade KKAγ male mice at age of eight weeks were kindly gifted by Prof. Wenhua Ling (School of Public Health, Sun Yat-sen University). These mice and 12 male C57BL/6J mice from Medical Experimental Animal Center of Guangdong Province were fed with AIN93G basic diet for one week. After collecting their blood samples from orbital veins for measurement of serum lipid-related indices, KKAγ mice were randomly assigned into two groups according to their body weight: 12 mice in pio-untreated group were continuously fed with AIN93G basic diet; the others in pio-treated group were fed with basic diet supplemented with 30 mg pio/kg diet. The pio dose selected in the study was referred to experiments done before, while it had been proved to ameliorate lipid metabolic disorder in ob/ob mice [9]. Twelve male C57BL/6J mice in control group were fed with basic diet. Mice were kept individually with one per cage. Animals were free to eat and drink water and weighed once a week. Twelve weeks later, all mice were fasted for 12 h. Mice were anesthetized and fasting blood was drawn by eyeball removal. Animals were sacrificed and livers were collected. This study was approved by the Institutional Animal Care and Use Committee at Sun Yat-Sen University.

2.3. Serum Lipid Determination

Serum lipid-related indices such as TG, TC, LDL-C and HDL-C were measured by kits according to the protocols provided by the manufacturer on an automatic biochemical analyzer (Cobas Integra 800, Roche, Switzerland).

2.4. Determination of Lipid-Related Indices in Liver and Liver Index

The liver (500 mg) from each mouse was ground with 0.5 mL of saline and mixed with 4.5 mL of chloroform: methanol (1:1) mixture. After oscillation, the mixture was kept statically overnight at 4 °C. Supernatant was obtained by centrifugation at 3500 rpm for 20 min and used to determine liver TG and TC levels using kits according to the protocol provided by the manufacturer. Liver index was calculated using the following formula:

\[
\text{Liver index} \% = \frac{\text{Liver weight (g)/mouse weight (g)}}{100}
\]

2.5. Determination of SOD Activity and MDA Content

Serum SOD activity and MDA content were measured using kits according to the protocol provided by the manufacturer. Liver was prepared as 10% saline homogenate and centrifuged at 3500 rpm at 4 °C for 20 min. The supernatant obtained was used to measure liver SOD activity and MDA content by using kits according to the protocols, respectively.

2.6. Liver Biopsy

Fresh liver tissues were used to prepare frozen liver section. Liver tissues were immersed in OCT compound and snap-frozen in liquid nitrogen. The embedded frozen tissues were sectioned as slices with thickness of 4 μm using a cryostat section machine. The obtained frozen slices were placed on slides pre-coated with poly-lysine and stained with oil red O for fat and hematoxylin for nucleus. After sealed with neutral balsam, samples were examined under light microscope and photographed.

2.7. Determination of Total PPARγ, Total AMPKα and Phospho-AMPKα

Proteins of liver tissues were extracted with RIPA (Radio Immunoprecipitation Assay) buffer and quantified using BCA (bicinchoninic acid) kit. Proteins of each sample were separated by 10% SDS-PAGE and transferred onto PVDF (Polyvinylidene Fluoride) membrane. The membrane was then blocked with 5% skim milk at room temperature for 1 h and incubated with 1000-fold diluted antibodies directed against proteins as indicated overnight at 4 °C. After washed for three times, the membrane was incubated with 5000-fold diluted HRP-labeled secondary antibody at room temperature for 1 h and developed using an
enhanced chemiluminescence detection system (Amersham Pharmacia, UK).

2.8. Data Analysis

Data were expressed as mean ± standard deviation and analyzed using SPSS 11.0 statistical software. Differences between three groups and between different time (in Table 1 and Table 2) were analyzed by using repeated-measure ANOVA (General linear model). Differences between groups (in Table 3 and Table 4) were analyzed using randomized-design one-way ANOVA while differences within groups were compared with LSD method. A P-value less than 0.05 or 0.01 was considered as statistical significance.

3. RESULTS

3.1. Effects of pio on Body Weight in KKA^y Mice

We first examined the effect of pio on mice body weight. As shown in Table 1, at the beginning of the experiments, average body weight of KKA^y mice was 35–36 g, which is significantly higher than 28 g of the control C57BL/6J mice (P<0.01) as expected. After treated with pio for 6 weeks or 12 weeks, their average body weights were still significantly higher than those of C57BL/6J mice. Interestingly, treatment with pio for 6 weeks and 12 weeks further slightly increased the body weight of KKA^y mice, although the differences between the treated and non-treated KKA^y mice were not significant (P>0.05).

3.2. Effects of pio on Lipid Level in KKA^y Mice

We then studied the effect of pio on mouse serum lipid level. As shown in Table 2, at the beginning of the experiment, TG and LDL-C levels in KKA^y mice were significantly higher than those of the control C57BL/6J mice (P<0.05 and P<0.01, respectively). At the end of the experiment, all the above indices were still higher in KKA^y mice (pio-treated group) compared to the control. However, treatment with pio for 12 weeks significantly decreased serum TG level and increased serum HDL-C level in KKA^y mice compared with those

<table>
<thead>
<tr>
<th>Table 1. Effect of pio on Mice Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pioglitazone-untreated</td>
</tr>
<tr>
<td>Pioglitazone-treated</td>
</tr>
<tr>
<td>C57BL/6J</td>
</tr>
</tbody>
</table>

Note: **P<0.01 compared with pio-untreated group in respective week while *P<0.05 compared with 0 w in each group, n=12.

<table>
<thead>
<tr>
<th>Table 2. Effect of pio on Mice Serum Lipid Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pioglitazone-untreated</td>
</tr>
<tr>
<td>Pioglitazone-treated</td>
</tr>
<tr>
<td>C57BL/6J</td>
</tr>
</tbody>
</table>

Note: ‘‘P<0.05 and ‘‘P<0.01 compared with pio-untreated group in respective week while ΔΔP<0.01 compared with 0 w in each group, n=12.

<table>
<thead>
<tr>
<th>Table 3. Effect of pio on Mice Liver TG, TC and Liver Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Pioglitazone-untreated</td>
</tr>
<tr>
<td>Pioglitazone-treated</td>
</tr>
<tr>
<td>C57BL/6J</td>
</tr>
</tbody>
</table>

Note: ‘‘P<0.05 and *P<0.01 compared with pio-untreated group, n=12.
of non-treated KKA\(^y\) (P<0.05 and P<0.01, respectively). Serum levels of TC and LDL-C in KKA\(^y\) mice were not significantly changed by pio treatment (P>0.05).

We next explored the effect of pio on mouse liver lipid level. As shown in Table 3, at the end of the experiment, liver TG, TC and liver index in KKA\(^y\) mice (pio-untreated group) were significantly higher than those in the control C57BL/6J mice (P<0.05 and P<0.01). However, after pio treatment, liver TG and TC levels were significantly decreased (P<0.05 and P<0.01, respectively) and liver index slightly increased (P>0.05) compared with pio-untreated KKA\(^y\) mice.

We further investigated the effect of pio on mouse liver lipid using pathologic histology. As shown in Figure 1, liver cells from the control C57BL/6J mice were structurally intact showing clear and uniformed cytoplasm and no lipid droplets. By contrast, cells from non-treated KKA\(^y\) mice had diffused liver steatosis and obvious fatty infiltration. In comparison, cells from 12-week-pio-treated KKA\(^y\) mice only had milder liver steatosis and fat deposition.

3.3. Effects of pio on SOD and MDA Contents in Serum and Liver of KKA\(^y\) Mice

We next probed the effects of pio on serum and liver SOD activities and MDA contents. As shown in Table 4, serum SOD in KKA\(^y\) mice (pio-untreated group) was lower than the control C57BL/6J mice (P<0.05), while serum and liver MDA contents were higher than C57BL/6J mice (P<0.01). Treatment with pio significantly enhanced serum and liver SOD activities (P<0.01) and attenuated serum MDA contents (P<0.01). Liver MDA content also slightly decreased after pio treatment (P>0.05).

3.4. Effects of pio on Protein Expression and Phosphorylation of PPAR\(\gamma\) and AMPK\(\alpha\) in the Liver of KKA\(^y\) Mice

To further gain knowledge on the possible mechanisms by which pio exerts its function, we then studied its effects on total PPAR\(\gamma\), total AMPK\(\alpha\) and phospho-AMPK\(\alpha\) levels in liver. As shown in Figure 2, total liver PPAR\(\gamma\) and AMPK\(\alpha\) levels in KKA\(^y\) mice were similar to those in C57BL/6J mice. However, phospho-AMPK\(\alpha\) in KKA\(^y\) mice was significantly lower than that in C57BL/6J mice. Treatment with pio significantly elevated total PPAR\(\gamma\) and phospho-AMPK\(\alpha\) levels, while it had no effect on total AMPK\(\alpha\).

4. DISCUSSION

Although pio is mainly used as an effective hypoglycemic drug in clinical medicine, it also has a wide range of cardiovascular benefits such as lowering

Table 4. Effect of pio on Mouse SOD and MDA in Serum and Liver

<table>
<thead>
<tr>
<th>Group</th>
<th>Serum SOD (U/mL)</th>
<th>Serum MDA (nmol/L)</th>
<th>Liver SOD (U/mg protein)</th>
<th>Liver MDA (nmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioglitazone-untreated</td>
<td>35.80±2.75</td>
<td>40.75±2.55</td>
<td>251.50±17.95</td>
<td>3.64±0.63</td>
</tr>
<tr>
<td>Pioglitazone-treated</td>
<td>50.61±5.32**</td>
<td>25.44±2.36***</td>
<td>336.35±38.48**</td>
<td>2.91±0.38</td>
</tr>
<tr>
<td>C57BL/6J</td>
<td>42.45±5.61</td>
<td>18.21±1.69**</td>
<td>291.28±21.05</td>
<td>2.07±0.22**</td>
</tr>
</tbody>
</table>

Note: *P<0.05 and **P<0.01 compared with pio-untreated group, n=12.

Figure 1. Effects of pio on lipid distribution in mice liver. The livers were stained with oil red O for fat and hematoxylin for nucleus under microscope at 200 x magnification in C57BL/6J (A), KKA\(^y\) (B) and KKA\(^y\) treated with pio (C).
blood pressure, inhibiting atherosclerosis and improving cardiac remodeling [10, 11]. At present, its effects on improvement of fatty liver have become an extensively studied research area.

Researches have shown that pio activates target genes receptor (RXR) and translocates to the nucleus, where which further forms a heterodimer with retinoid X synthetic ligand for PPAR γ, pio activates target genes by increasing insulin sensitivity [10, 11]. As a receptor of insulin sensitizer, it is clear that PPAR γ, pio promotes differentiation of adipocytes in subcutaneous adipose tissue into adipocytes and apoptosis of visceral mature mast cells, resulting in redistribution of visceral and subcutaneous adipose tissues and increased body weight [13]. Thus, the side effects of pio treatment of diabetes such as weight gain should not be ignored.

As a receptor of insulin sensitizer, it is clear that PPARγ activation can ameliorate lipid metabolic disorder by increasing insulin sensitivity [14]. As a synthetic ligand for PPARγ, pio can activate PPARγ, which further forms a heterodimer with retinoid X receptor (RXR) and translocates to the nucleus, where promoting targeted gene expression [15, 16]. Researches have shown that pio activates target genes downstream of PPARγ, leading to up-regulation of lipoprotein lipase (LPL) and hormone sensitive lipase (HSL) expression, resulting in decrease in the level of plasma TG [17]. Meanwhile, activation of PPARγ can induce expression of adipose-specific factors such as adiponectin to inhibit decomposition of peripheral adipose tissue, lower FFA level and ameliorate liver lipid accumulation [18]. By improving insulin sensitivity of targeted tissues and reducing circulating insulin level, pio can also directly inhibit acyl-CoA synthetase 4 activity in liver cells and inhibit lipid synthesis in liver through PPARγ independent pathways [19]. Our results showed that pio treatment reduced serum and liver TG and liver TC levels, and increased serum HDL-C level and liver index. Treatment of NAFLD patients with pio in combination with vitamin E significantly ameliorated liver steatosis, ballooning degeneration and Mallory bodies [20]. Similarly, our results of liver histopathological examination also showed significantly improved liver fat redistribution in pio treated KKAγ mice.

Lipid metabolic disorder is often associated with oxidative stress. PPARγ ligands can reduce intracellular ROS production by inhibiting NADPH oxidase expression [21]. Studies have shown that pio can inhibit lipid peroxidation in rats with lipid metabolic disorder, increase Cu, Zn-SOD and GPx activities, thus resisting the response of obese rats to oxidative stress [22]. MDA is a product of lipid peroxidation and widely used as index for cell and tissue damage. SOD can effectively remove superoxide anion (O2·−) and its activity has been used as index for body’s antioxidant capacity. Our results showed that pio treatment increased serum and liver SOD activity and decreased serum and liver MDA content, indicating that pio has antioxidant ability. However, the relationship between pio’s role in improving lipid metabolism and antioxidative effect remains to be elucidated.

AMPK is a member of serine/threonine protein kinase family. The α subunit is essential for its kinase activity. Activation of AMPK can increase lipid metabolism by increasing fatty acid oxidation and reducing triglyceride synthesis. 3-Hydroxy-3-methylglutaric acid (HMG) CoA reductase and acetyl-CoA carboxylase (ACC) are AMPK substrates that play key roles in cholesterol and fatty acid syntheses. Activation of AMPK can increase phosphorylation of HMG-CoA reductase and ACC, resulting in decreased activities of the two enzymes and consequent inhibition of cholesterol and lipid synthesis [23]. In addition, AMPK can decrease malonyl CoA concentration, eventually inducing fatty acid oxidation and inhibiting lipid formation [24]. Our results indicate that pio
increases AMPKα phosphorylation, suggesting that the effects of pio on the improvement of lipid metabolism and antioxidant function may be related to the activation of AMPK. However, its specific mechanism and the possible interaction between AMPK and PPARγ remain unclear.

Taking together, under the current pio dosage in this study, pio could ameliorate serum and liver lipid level and response of KKAγ mice with lipid metabolic disorder to oxidative stress. These effects may be related to its regulation on expression of PPARγ protein and AMPK phosphorylation. However, according to our study, pio treatment may cause weight gain, therefore, the application of appropriate dosage is critical and it should be carefully treated when applied for the prevention of lipid metabolic disorder.

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

FINANCIAL DISCLOSURE

Grant Support

National High Technology Research and Development Program of China (863 Program, grant number:2006AA02A311); Guangdong Science and Technology Department (grant number: 93085); Guangzhou municipal bureau of Science and Technology (grant number: 2009Z1-E061); Administration of Traditional Chinese Medicine of Guangdong Province (grant number: 20111157).

The funders of the study had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Prof. Wenhua Ling (School of Public Health, Sun Yat-sen University) for kindly providing KKAγ mice.

We thank Prof. Zhenheng(Jason) Chen (College of Pharmacy and Allied Health Professions, St. John’s University) for constructive suggestions of this study.

ABBREVIATIONS

AMP = Adenosine monophosphate
AMPK = AMP-activated protein kinase
MDA = Malondialdehyde
PPAR = Peroxisome proliferator-activated receptor
SOD = Superoxide dismutase

REFERENCES

© 2011 Chen et al.; Licensee Lifescience Global. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.