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Abstract: One family of heterogeneous strategies in differential games with (a)symmetric players is developed in which 
one player adopts an anticipating open-loop strategy and the other adopts a standard Markovian strategy. Via 

conjecturing principle, the anticipating open-loop strategic player plans her strategy based on the possible updating the 
rival player may take. These asymmetric strategies should be appropriate choices in some modelling circumstances and 
they frame one of the infinitely many non-degenerate Markovian Nash Equilibrium. Except the stationary path, this kind 

of strategy makes the study of short-run trajectory possible, which usually are not subgame perfect. However, the short-
run non-perfection may provide very important policy suggestions. 
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1. INTRODUCTION 

There are many economic examples in which it 

makes sense to assume that players do not have equal 

levels of commitment, and modelling this via different 

requirements imposed on the optimality of strategies – 

open-loop on one end, Markovian best-reply on the 

other – seems like the right way to go. Economists and 

game theorists notice this idea for some time, but the 

application of this idea is quite limited. 

In their seminal paper, Reinganum and Stokey 

(1985, p.162) state that when formulating a model, care 

should be taken to choose a strategy space that is 

appropriate for the situation under study. “Path 

strategies may be appropriate in some situations, 

decision rule strategies in others, and intermediate 

formulations in still others". More recently, Dockner et 

al. (2000, p.87) emphasize again that the analysis 

should “...consider equilibria in which some of the 

players represent their optimal control paths in open-

loop form while others choose nondegenerate 

Markovian strategies. " and further “...the choice to 

solve a differential game... ( for equilibria in which 

some players use open-loop strategies while others 

employ nondegenerate Markovian strategies) is part of 

the modelling stage and one should try to analyze that 

equilibrium which describes best the situation at hand". 

This paper takes special care of these intermediate 

formulations in differential games, where players taking 

different strategic spaces seems more appropriate for  
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some modelling circumstances. We name hetero-

geneous strategic Markivian Nash equilibrium as one 

equilibrium where one player employs open-loop 

strategy and the other player takes standard Markovian 

strategy. 

Here, we assume that all players share the same 

information structure
1
. Nevertheless, heterogeneity 

may appear in different aspects; thus appropriate 

strategy spaces should be chosen carefully. 

First, players share the same information set, 

however, they may have difficulties to perform the 

same strategies as their rivals. Han et al. (2014), see 

Section 3 for more detail, present one such kind of 

situation in dynamic tax/infrastructure competition 

between large and small economies. As they argued 

that the small economy may be less efficient than the 

large one in interpreting its policy and offering public 

services, while the small economy may be more 

flexible than its large rival in collective or single-minded 

action. Dawid and Feichtinger (1996) show another 

such kind of asymmetric case in the study of optimal 

allocation of drug control efforts. In their model, both 

government (the drug controller) and drug dealers 

know the drug users, and their strategy spaces may 

differ. 

Second, though players share the same information 

and have the same capacities to interpret the same 

strategies or policies as their rivals, they may differ in 

their moral standard or their attitudes. In other words, 

                                            

1
See more detail about information structure in Section 6.2 of Bacard and 

Olsder (1998). We do not study the case of information non-uniqueness as 
Basar (1976) and more recently Sorger (2015). 
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players can be symmetric in their characteristics but 

just play asymmetric strategies. This can be seen from 

the international CO2 emission control problem. 

Despite the well-known stragedy of the commons 

results, unilateral action has been observed in 

collective-action problems like climate-change 

negotiations. Notable in 2007, EU country 

representatives committed themselves to a unilateral 

20 per cent reduction in GHG emissions by 2020 and 

even offered a 30 per cent decrease in case an 

international agreement could be found. While the 

other big players (like the USA and China) can deviate 

from their commitments (or do not commit at all) and 

regularly revise their targets and policies. Benchekroun 

(2003) works out a situation of ‘‘Unilateral production 

restrictions in a dynamic duopoly". Though the setting 

of Benchekroun (2003) could be solve by the strategy 

provided here, he did in a quite different way. Our 

results could demonstrate another group of asymmetric 

Markovian Nash equilibrium. Indeed, under a different 

setting, Reinganum (1981) shows that under her 

setting two identical players adopting asymmetric 

strategies is optimal. 

Thus, player engaging in this kind of differential 

games must first figure out that, among other important 

issues, in which strategy space she is playing, the 

subgame perfection of the chosen strategies and the 

possibility of studying the trajectory dynamics. Via 

conjecturing principle
2
, we shall introduce 

heterogeneous strategies by allowing some players to 

adopt open-loop strategies while others non-

degenerate Markovian strategies. 

The main contribution of this work is that 
Hamiltonian can be applied to look for heterogeneous 
strategic Nash Equilibrium along the whole trajectory. 
The conjecturing principle makes this possible. 
Otherwise, without this guessing principle, applying 
Hamiltonian searching for feedback strategies, we will 
face the difficulties of guessing each others’ infinitely 
many optimal strategies, as clearly stated by Kamien 
and Schwartz (2003, P.275): ” finding player i’s optimal 

feedback strategy ui
*(x, t)  requires that player j’s 

optimal feedback strategy u j
*(x, t)  be known which, in 

turn, requires that player i’s optimal be known, and so 
on." The family of games, where one player is less 
flexible in changing strategies based on state of the 
world than the other player, makes this guessing 
process stop at one step instead of infinitely many. 

                                            

2
Guessing technique is often in use in game theory and especially differential 

games, see Long (2010) for more examples. 

Our approach fits specially well to differential games 

with unilateral commitment. Most of the economic 

literature
3
 applying differential games ignores the 

impact of unilateral commitment and focuses only on 

symmetrical strategy spaces. Nevertheless, unilateral 

commitment is not the only case where these kinds of 

heterogeneous strategies are adopted. In Section 3, we 

present different situations where this kind of strategy 

space should be taken. Thus far, the literature provides 

only limited applications of these kinds of 

heterogeneous strategies. The technique we are going 

to present is studied by Dockener et al. (2000; Example 

4.1) where there are two asymmetric players with 

different objective functions though sharing the same 

state equation. 

The paper is organized as follows: in Section 2, we 

introduce the concept and formulation of 

heterogeneous strategy in a general setting. Then, 

Section 3 presents some situations where anticipating 

open-loop and non-degenerate Markovian strategies 

should be played at the same time. Some concluding 

remarks are given in Section 4. 

2. HETEROGENEOUS STRATEGIES  

Consider a two
4
 players’ differential game and 

assume all functions are continuously differentiable. 

Each player i(= 1, 2)  chooses ui Ui  (where 
 
Ui  is 

the choice space for player i ) to maximize her 

objective function i :  

ui

max i (ui ,u j ) =
ui

max
0
e rt fi (t,ui ,u j , x(t))dt,

i, j =1, 2, i /= j,
       (1) 

where player j s strategy u j U j  is taken as given by 

player i . We assume x(t) X  is the shared common 

state of the system 
5
 (with  X , the state space) and 

r  is a positive constant denoting discounting factor and 
is the same for both players for simplicity. The state of 
the system is given by the following differential 
equation  

 
x(t) = g(t,u1(t),u2 (t), x(t)), t 0          (2) 

 

                                            

3
See Long (2010) for a recent and complete survey 

4
For more than two players’ game, given all players share the same 

information, there would be two groups of players. 
5
Except some players commit to all the state variables, the concept and 

method may not be analogous if there are different states for different players 
or multiple states, see for example Reynolds (1987). 
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with initial condition x(0)  given. For simplicity, we also 

assume both objective functions fi ( )  and state 

function g( )  are at least twice continuously differential. 

We impose the heterogeneous strategy in the 
following sense: player 1  adopts a Markovian strategy 

and its optimal choice u1  depends not only on time t , 

but also on the current state x  of the system; while 

player 2 ’s optimal strategy u2  depends only on time, 

i.e., there is an irrevocable commitment, which is given 
based on some anticipating of the rival player’s 
potential Markovian choice. The precise definition of 
this kind of heterogeneous strategy is the following. 

Definition 1 (Heterogeneous Strategic Nash 

Equilibrium) A 2-tuple ( 1, 2 )  of functions 

 1 : X 0,+ )  and 
 2 :[0,+ ) , with 

1 = 1(x, t), (x, t) X 0,+ )  and 

2 = (t), t 0,+ ) , forms a Heterogeneous 

Strategic Markovian Nash Equilibrium if, for each 

player i , an optimal control path ui  of player i  exists 

and is given by: Markovian strategy for player 1, 

u1(t) = 1(x(t), t)  by knowing player 2’s open-loop 

strategy, and anticipating open-loop strategy for player 

2, u2 (t) = 2 (t)  by taking into account player 1’s 

Markovian strategy.  

To find the heterogeneous strategy, we depend on 

some special principle of conjecturing based on 

Pontryagin’s Maximum principle. It is common 

knowledge that if sufficient concavity conditions are 

imposed, Pontryagin’s Maximum principle can provide 

not only necessary but also sufficient conditions for 

each individual player’s optimal choice. Thus, if both 

players adopt strategies based on Pontryagin’s 

Maximum principle, we can write down player i’s 

Hamiltonian function as  

Hi (x, i ,ui , t) = fi (t,ui ,u j
*, x) + i (t)g(t,ui ,u j

*, x), i =1, 2, i /= j.  

Here u j
*  is player j’s optimal choice and taken as 

given by player i, i  is player i’s costate variable. 

Theoretically, the usual first order conditions should 
present the optimal solution, which we denote as: 

1(t) = 1(x(t), t)  and 2 (t) = 2 (x(t), t) , t 0 . 

However, for the case of both players adopt feedback 
strategies, we face the problem which stated by 
Kamien and Schwartz (2003, P.275) as: ” finding player 

i’s optimal feedback strategy ui
*(x, t)  requires that 

player j’s optimal feedback strategy u j
*(x, t)  be known 

which, in turn, requires that player i’s optimal be known, 
and so on." 

Thus, in order to diminish this infinitely looping 
problem, a special case–heterogeneous strategies can 
be considered, which are played as following: 

Player 1 (the Markovian strategic player) takes 

player 2’s (open-loop) strategy 2 (t)  as given, and 

hence, faces the following optimization problem:  

 

u1(x,t )
max

0
e rt f1(t,u1(x, t), 2 (t), x)dt,

subjectto x(t) = g(t,u1(x(t), t), 2 (t), x(t)).
       (3) 

The corresponding current-value Hamiltonian for 
player 1 is  

H1(x, 1,u1, t) = f1(t,u1(x, t), 2 (t), x) + 1(t)g(t,u1(x, t),

2 (t), x),
 

where 1  denotes player 1’s costate variable. 

Player 2, the open-loop strategy player, applies the 
conjecturing principle: player 2 guesses that strategy 

1(t) = 1(x(t), t)  will be replaced by 1(x, t)  for any 

state variable x X , since player 1 plays Markovian 
strategy. 

Therefore, player 2 (open-loop strategy player), 

taking player 1’s Markovian strategy 1(x, t)  as given, 

faces the following problem:  

 

u2 (t )
max

0
e rt f2 (t, 1(x, t),u2 (t), x(t))dt,

subjectto x(t) = g(t, 1(x(t), t),u2 (t), x(t)).
        (4) 

The corresponding current-value Hamiltonian for 
player 2 is  

H 2 (x, 2 ,u2 , t) = f2 (t, 1(x, t),u2 , x) + 2 (t)g(t, 1(x, t),u2 , x),  

where 2  is the costate variable for player 2. 

Theorem 1 Suppose function fi ( )  is strictly 

concave in control variable ui  for i =1, 2 . Denote the 

solution of optimization problems (3) and (4) as u1
*(x, t)  

and u2
* (t) , respectively, x X  and t 0 . If the two 

maximized Hamiltonian: for player 1  

H1 (x, 1, t) = f1(t,u1
*(x, t),u2

* (t), x) + 1 g(t,u1
*(x, t),u2

* (t), x)  

and for player 2  

H 2 (x, 2 , t) = f2 (t,u1
*(x, t),u2

* (t), x) + 2 g(t,u1
*(x, t),u2

* (t), x).  

are both concave in term of state variable x , then 

{u1
*(x, t),u2

* (t)}  forms a pair of non-degenerate 
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Markovian Nash Equilibrium for differential game (1) 
and (2).  

Proof. Consider problem (3), the first order 

condition yields that player 1’s choices u1(x, t)  is given 

by the solution of  

H1 u1 = f1 u1 + 1 g u1 = 0.          (5) 

The costate variable 1  verifies equation
6
  

1(t) = r 1 dH1dx = r 1

f1 x + 1 g x( )

+ f1 u1 + 1 g u1( ) 1(x, t) x
,  

where dH1dx  denotes the total derivative
7
 of H1  with 

respect to x  and the last term is equal to zero, by the 
first order condition (5). Thus, player 1’s co-state 
equation reads  

 
1(t) = r 1(t) f1 x + 1(t) g x( )          (6) 

with transversality condition tlim e rt
1(t)x(t) = 0 . 

Similarly, u2 (t) , the optimal choices of player 2, is 

given by  

H 2 u2 = f2 u2 + 2 g u2 = 0.          (7) 

And, the costate equation is  

 

2 (t) = r 2 dH 2dx = r 2

f2 x + f2 u1 1(x, t) x( ) + 2 g x + g u1 1(x, t) x( )
 

or equivalently,  

 

2 (t) = r 2

f2 x + 2 g x( ) +

f2 u1 + 2 g u1( ) 1(x, t) x
.        (8) 

The associated transversality condition is 

tlim e rt
2 (t)x(t) = 0 . 

Remark. Equation (8) differs from (6) due to the fact 
that in (6) the first order condition (5) can be applied; 
while in (8), that is not possible. 

Denote the solution of (5) and (7) as 

u1
* = 1

*(x, t), (x, t) X [0, )  and u2
* = 2

* (t), t 0 , 

                                            

6
A similar notation can also be found in Itaya and Shimomura (2001). However, 

without guessing process, they can not go further than just writing down the 
functional form of first order conditions. See more systematic statement for the 
general case in Kamien and Schwartz (2003, Page 275).  
7
The state variable affects the current-value Hamiltonian via two different ways: 

the direct impacts by the state equation and indirect impacts due to the 
strategy of the other player.  

respectively. To be more precise 1
*(x, t)  is a function 

of state x , the costate variable evaluated at time t ; 

and 2
* (t)  is a function of state and costate variables 

both evaluated at t , thus, 1
*(x, t) = 1

*(x, 1(t), t)  and 

2
* (t) = 2

* (x(t), 2 (t), t) . Substituting these two into the 

Hamiltonian, we can readily check that the maximized 

Hamiltonian H1 (x, 1, t)  and H 2 (x, 2 , t)  are given by  

H1 (x, 1, t) = f1(t, 1
*(x, 1, t), 2

* (x, 2 , t), x) +

1 g(t, 1
*(x, 1, t), 2

* (x, 2 , t), x)
 

and  

H 2 (x, 2 , t) = f2 (t, 1
*(x, 1, t), 2

* (x, 2 , t), x) +

2 g(t, 1
*(x, 1, t), 2

* (x, 2 , t), x).
 

Given the maximized Hamiltonian are both concave 
with respect to the state variable x . Then, by Theorem 

3.2 (Dockner et al, 2000), ui
*(t)  (i =1, 2)  are optimal 

paths. Thus, the solution {u1
*(x, t),u2

* (t)} , x X  and 

t 0  form a pair of non-degenerate Markovian Nash 

Equilibrium. 

Finally, substituting u1
* = 1

*(x, t)  and u2
* = 2

* (t)  into 

the canonical system: state equation (2), two costate 
equations (6) and (8), we can obtain the solution for the 
whole trajectory path of the differential game. That 

finishes the proof.  

Remark. It is easy to see if the Markovian player’s 
strategy is independent of the state x , then the above 
Heterogeneous Strategic Markovian Nash equilibrium 

is just degenerate open-loop Nash equilibrium. 

Nonetheless, in Heterogeneous Strategic Markovian 
Nash equilibrium, the open-loop player differs from the 
classical case where both players adopt open-loop 
strategies. Under current setting, the open-loop 
strategic player corrects, though at the beginning of the 
game by some guessing principle, her strategy based 
on the possible updating the rival player may take. 
Thus, the open-loop strategy player is not completely 
passive, rather in an anticipating defensive position. 
We call this kind of open-loop strategy as anticipating 
open-loop strategy

8
. This way of constructing strategy 

gives possibility of subgame perfection.
9
 

                                            

8
Our definition of anticipating strategy is different from the non-anticipating 

strategy defined in Chapter 8, Dockner et al. (2000), in which the non-
anticipating strategy means that a feasible strategy for an optimal action at time 

t  can only depend on information that has been revealed by that time, rather 

than the realization of future time. Our definition of anticipating focus on the 
anticipating of the rival’s strategic form (that is, knowing the rival player will 
update her strategy and play Markovian strategy), rather than on the future 
information. 
9
Of course, open-loop strategy may be subgame perfect, see Reynold (1987).  
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We close this section with a brief remark concerning 

the subgame perfection of stationary Markovian Nash 

Equilibrium in an autonomous system. 

Theorem 2 Suppose the differential game (3) and 
(4) defined on time interval [0, )  and suppose the 

system under study is autonomous. Then under the 
assumption of the Theorem 1, the pair of stationary 

strategy, (u1
*
= 1

*(x),u2
*
= 2

* (x))  is subgame perfect 

heterogeneous strategic Markovian Nash equilibrium 
as long as it does not depend on the initial condition 

x(0) .  

Proof. The reason for subgame perfection follows 
the remark of Dockner et al (2000, P.105)– if an 
autonomous differential game is defined on the time 
interval [0, ) , then its subgame is equivalent (in fact, 

identical) to the original game. It follows from the 
definition of subgame perfect Nash equilibrium that any 
stationary Markovian Nash Equilibrium is subgame 
perfect, provided it is independent of the initial state 
x(0) .  

Obviously, if the system is non-autonomous, this 

results may not be true, even the stationary strategy is 

independent of the initial state. 

Remark. The subgame perfection is most probably 

only true in the set of heterogeneous strategic 

Markovian Nash equilibrium, which is a subset of the 

set of infinitely many non-degenerate Markovian Nash 

equilibrium. 

The economic interpretation is the following: Player 

2 adopts an anticipating open-loop strategy which is 

based on guessing the Markovian strategy of player 1. 

If player 1 plays subgame perfect stationary strategy, 

player 2, as a by-product, also plays subgame perfect 

strategy. The reason is that the guessing process 

includes all the information about what player 1’s 

optimal strategy will be. This differs from the case 

where both players adopt open loop strategies. Thus, 

the updating information is embodied in the guessing 

process rather than losing in commitments. 

3. EXAMPLES AND APPLICATIONS 

In this section, we provide some examples where 

asymmetric situations appear and heterogeneous 

strategy spaces should be adopted by the players. The 

order of examples are the following: Example 1 and 2 

present the situation where the two players enjoy the 

same information set, however, one does not have the 

same capacity of taking the same strategy as her rival. 

Example 1 comes directly from the recent publication of 

Han et al. (2014) where they also study the difference 

between heterogeneous strategies and homogenous 

ones. Example 2 is a modification of Dawid and 

Feichtinger (1996). Some more potential applications in 

this case are also presented after Example 2. Example 

3 and 4 are the case where the two players are 

symmetric or identical in obtaining information of the 

state of the world and having the same capacity of 

making decision, however, due to social choices, 

political considerations or other constraints, one player 

commits to and keeps on a strategy, while the other 

player updates her strategy based on the state of the 

world. This is the case we called unilateral commitment 

in differential game. 

This list of real world situations in which dynamic 

heterogeneous strategies are played is not exhaustive. 

Further applications and potential examples will be 

mentioned again in the conclusion. 

3.1. Same Information Set but Different Strategy 
Spaces 

Example 1. Dynamic Tax Competition between 
Unequal Size Jurisdictions–Han et al. (2014) 

Most models in the tax competition literature are 

static. Though Zissimos and Wooders (2008) have 

called for the need of dynamic studies of tax 

competition, Han et al. (2014) is one of the very few 

exceptions studying tax competition under a dynamic-

strategic setting. They assume that a small economy 

and a large one enter a dynamic tax-and-infrastructure-

competition game where the size asymmetry of these 

two economies play an essential role. 

As they argued, small-in-size is a natural 

disadvantage for most of the small economies, but 

sometimes small-in-size can be considered an as asset 

(Kuznets, 1960; Easterly and Kray, 2000) given the 

economic success of many micro-states. Han et al 

(2014) argue that small states are more flexible in their 

political decision making than much larger countries 

(Streeten, 1993); for example, problems related to 

collective action can be solved more easily in small 

countries. These attributes facilitate greater single-

mindedness and focus on economic policy-making and 

promote a more rapid and effective response to 

exogenous change (Armstrong and Read, 1995). 

Han et al. (2014) introduce dynamic firm relocation 
process via location attachment assumption. More 
precisely, they assume that the one person one capital 
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firm produces net q + ai  units final goods and sold in 

world competitive market with price normalized to 1. 

Here, q  presents private firm’s productivity and ai , 

i =1, 2 , reads country i ’s specific productivity 

enhancing public goods. 

Consider an entrepreneur in the small country, if 
she invests at home, the profit is  

1(t) = q(t) + a1(t) T1(t)  

and if she invests abroad, profit is then  

2 (t) = q(t) + a2 (t) T2 (t) k x(t)  

with Ti (t)  tax rate in country i =1, 2 . Here, mobility cost 

is k x(t)  with unit mobility cost k  and distance to 

frontier x . 

Similar arguments are also true for firms originally 

located in big country. Thus, we can obtain the 

indifferent firm is located at  

x(t,a1,a2 ,T1,T2 ) =
a2 (t) T2 (t)

k

a1(t) T1(t)

k
.  

If denote number of firms at time t  located in the 

small economy as S1(t) = S(t)  and the number of firms 

in the large economy is then S2 (t) = 1 S(t)  by 

assuming that total number of firms is constant and 
normalized to 1. Thus, law of motion of number of firm 
in the small economy is governed by  

 

S(t) = x =
a1(t) T1(t)

k

a2 (t) T2 (t)

k
.         (9) 

Furthermore, both small and large economies’ 

policy makers choose tax Ti (t)  and public goods ai (t)  

simultaneously to maximize tax revenue:  

Ji = max
ai ,Ti 0

+

e rt SiTi
i

2
ai
2 dt, i =1, 2,  

subject to dynamic relocation of firms (9). 

Though, mathematically, the optimization problem 

for both small and big economies are the same, they 

may react differently due to their size differentiation. A 

given number of firms may be just a small sector in the 

big economy, but could be the whole or the main 

industry of a small economy. Thus, the degree of 

competition and the importance of competition differ 

between the big and small economies. This 

dissimilarity induces the two economies behave 

accordingly. In order to survive, the small economy 

must react collectively and more rapidly depending on 

the changes of situations – Markovian strategy; while 

the large economy can afford to follow plans though 

taking into account the possible strategic actions the 

small economy may take – anticipating open-loop 

strategy. 

Han et al. (2014) find that the extra flexibility in 

policy making– taking Markovian strategy – is very 

essential for the surviving of small states while 

competing with big folks. 

Example 2. Optimal Allocation of Drug Control 
Efforts 

Dawid and Feichtinger (1996) provide a dynamic 

drug control problem with two players, i.e., drug dealers 

and the government. Thus, the players are asymmetric. 

The model is the following: both government and 
drug dealers maximize their respective objectives. The 
drug dealers choose, u > 0 , the effort of the dealers, 
which they interpret as the time the dealer spends in 
the street in order to attract new customers; and 
government chooses, v > 0 , the whole expense spent 

to deal with drug problem. Denote x(t) [0, x]  as drug 

user at time t , with given fixed upper bound x > 0 . 

Dawid and Feichtinger (1996) assume that the 
growth of the stock of drug users is governed by three 
forces: activities of the drug dealers, death and 
treatment of drug users. Denote g(x)  as a growth 

function with the characteristic notions of a diffusion 
dynamics of drug user, d  as death rate and hence, the 
motion of drug user follows:  

 

x = g(x) u dx f (x) v,

x(0) = x0 [0, x], [0,1],d > 0.
      (10) 

Here, function f (x) v  measures the treatment 

effects, with [0,1]  fraction of budget for drug control 

invested in treatment, (1 )v  the fraction of budget of 

crackdown on dealers, and f C1[0, x]  checks: 

f (0) = 0 , f (x) > 0  and ( f (x) / x) < 0 . 

The objective of drug dealer is  

u [0, )
maxJd = 0

e
rdt [U(x) Cd (u, (1 )v)]dt,       (11) 

subject to constraint (10), where function U( )  is 

dealer’s income and function Cd ( )  describes the 

damage for the whole class of dealers caused by 
government law enforcement actions. 
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The problem of government is the cost produced by 
the drug users, including the direct cost, D(x) , and the 

effort of controlling the drug problem, Cg (v) . Thus, the 

objective of government is:  

v [0, )
maxJg = 0

e
rgt [ D(x) Cg (v)]dt,        (12) 

subject to constraint (10). 

Dawid and Feichtinger (1996) develop an explicit 

solution of the stationary feedback strategies where 

both players play Markovian strategies. Arguably, 

though both government and drug dealers have the 

same information as to the number of drug users, they 

have different objective and different constraint on 

taking their strategic actions. Thus, different strategic 

spaces may be more proper: government’s treatment 

and law enforcement are based on law and/or 

regulations while the drug dealers act in ways to avoid 

government control. Given the law and regulations are 

transparent and announced by the government( if we 

do not consider policemen’s action) while drug dealers 

do not communicate on their actions and strategies, 

heterogeneous strategies could be applied in such a 

context: the drug dealers change their strategies and 

efforts based on the reality–Markovian strategy, while 

government action is more open-loop by taking into 

account the drug dealers’ effort, thus anticipating open-

loop strategy. Therefore, the two players reach to one 

heterogeneous strategic Nash Equilibrium. 

We close this subsection by noticing that these 

kinds of examples could also come from the dynamic 

competition of oligopoly with competitive fringes. In a 

static setting, Shimomura and Thisse (2012) study 

asymmetric competition among big and small firms, in 

which the few big commercial or manufacturing firms 

are able to affect the market outcome, and a myriad of 

small family-run businesses with very few employees 

has a negligible impact on the market. In a general-

equilibrium setting, they demonstrate that (abstract on 

Page 1) ”due to the higher toughness of the market, the 

entry of big firms leads them to sell more through a 

market expansion effect, which is generated by the exit 

of small firms." Thus, asymmetric strategies are played 

at the same time depending on the market power. It 

would be interesting to study the dynamics of this kind 

of games and its long-run outcome under a differential 

game where the market share (such as in Han et al. 

2014) or the goods’ prices (such as in Fershtman and 

Kamien, 1987, 1990) could serve as the state variable. 

Benchekroun et al. (2009) indeed work out a similar 

asymmetric situation “on nonrenewable resource 

oligopoly". Nonetheless, they only study the outcome 

where both players using open-loop strategies, thus the 

asymmetric marketing power of strategic choice can 

not be shown explicitly. 

3.2. Symmetric Players but Heterogeneous 
Strategies 

Example 3. Transboundary Pollution– Unilateral 
Commitments 

This example relates to the international CO
2

 

emission control problem. Since the seminal paper of 

Dockner and Sorger (1996), there have been various 

contributions using differential games to study 

transboundary pollution control problems. However, 

most of them have simply ignored open-loop strategies. 

The main reason is that it was thought that players are 

too naive to play open-loop strategies as they do not 

use any information acquired during the game and, 

consequently, do not respond to changes in the current 

pollution stock. In the context of climate change and 

policies that have been implemented to its mitigation, it 

is important to distinguish between countries which 

have taken binding commitments to stabilize/reduce 

their Greenhouse Gas (GHG) emissions, such as in the 

Kyoto Protocol or the EU 2007 Energy Package, and 

countries which have proposed more flexible 

approaches, based on regular updates of the targets to 

reach, according to current states of the world. 

For this kind of problem, the EU, under the Kyoto 

Protocol or its own unilateral policies, makes 

commitments about emission reductions from which 

they cannot deviate, while the USA and China, on the 

contrary, can deviate from their commitments (or do not 

have any commitment at all) and regularly revise their 

targets and policies. In the first case, we refer to open-

loop strategies and in the second case to Markovian 

strategies. And, obviously, the classical method, where 

either both players adopt open-loop strategies or both 

play Markovian strategies, is not the proper one in 

these sorts of circumstances. 

Bertinelli et al. (2015) present one of this type of 

example. The choices of different players could be the 

abatement efforts or CO2 reduction and the common 

state will be the environmental quality or CO2 stock. 

More precisely, the possible model is the following. 

These two players undergo the same pollution 
state, x(t) , which is given by the following equation  

x(t) = E(t) (ui + u j ) x(t) x(t), t 0,       (13) 
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where the initial condition x(0)  is a given positive 

constant, and parameter [0,1]  measures the 

pollution absorption rate of nature. E(t) = Ei (t) + Ej (t)  is 

a known positive function of pollution emissions. 

The two countries’ policy makers need to choose 

their abatement rate ul , l = i, j , to maximize their utility  

ul

max
0

T
e

rlt x(t) l 2ul
2( )dt + S(x(T )), l = i, j,      (14) 

subject to the state constraint (13), where rl [0,1)  is 

the time preference parameter, l  is a positive, 

constant adjustment cost coefficient. We consider 

T , where S(x( )) = 0  and in finite time T = T , 

S(x(T ))  is a given known positive function, with Sx < 0 . 

Furthermore, x(T )  is the final target of the pollution 

state of the world, where both players agree on a final 
date T . 

Most probably, as long as T < , the 
heterogeneous strategy is not subgame perfect, which 
coincides with the tragedy-of-the-commons’ outcome, 
this unilateral decision should have worsened the 
welfare of EU citizens. 

Example 4. Unilateral Production Restrictions in a 
Dynamic Duopoly 

Benchekroun (2003) presents a model where 

several countries share access to a productive asset 

and the agreements upon the exploitation of the asset 

are very hard to reach. 

In more detail, he assumes that firm i(= 1, 2)  
maximizes its own discounted sum of instantaneous 

profits:  

J i =
0
P(q1(t) + q2 (t))qi (t)e

rtdt,  

subject to the law of motion of asset stock  

 
S = F(S) q1(t) q2 (t), S(0) = S0 given.  

Here, parameter r  is time preference, qi  is quantity 

of output of firm i  from country i , price P(q)  is inverse 

demand function, S  reads stock of productive asset 
and function F(S)  presents the production of stock, 

such as fish population. 

Benchekroun (2003) first presents the results of 

laissez-faire closed-loop Nash equilibrium, then he 

goes one step further consider a situation where one 

player wishes to increase the asset’s stock in the long 

run. Given “no agreement between the two countries is 

possible: country one can only regulate its own firm’s 

production " (Page 222), thus “ country one implements 

unilaterally a production restriction". In doing so, 

Benchekroun (2003) first “supposes that country one 

constrains its firm to adopt" an exogenously given 

strategy based on the above calculated laissez-faire 

closed-loop Nash equilibrium strategy; then the firm 

two’s best response, to the given firm one’s strategy, is 

calculated. Thus, long-run steady states studies, under 

the two different strategy sets, are possible and 

comparison outcomes are presented. 

However, the given constrained strategy of country 

one is more based on common sense without 

justification, which may not be optimal choice of the 

country one. Thus, most probably, the pair of strategies 

is not one Nash equilibrium. It is plausible and 

interesting to study this kind of setting but apply 

heterogeneous strategic Nash equilibrium and 

compared with laissez-faire closed-loop Nash 

equilibrium. 

4. CONCLUDING REMARKS 

Some particular heterogeneous strategies are 

introduced in various kinds of differential games. The 

heterogeneity means that one player adopts an 

anticipating open-loop strategy while the other player 

takes on a non-degenerate Markovian strategy - thus 

the strategy spaces are heterogeneous. The key idea 

is the guessing of the rival’s strategies and the 

construction of strategy could be specially useful to the 

study of asymmetric players’ differential games. 

The novelty of this kind of strategy is twofold. On 

the one hand, it offers another – except the standard 

Markovian strategy for all players – stationary subgame 

perfect non-degenerate Markovian Nash equilibrium for 

an autonomous system with infinite-horizon. On the 

other hand, via Hamiltonian, it can characterize the 

whole trajectory, which is especially useful in the case 

of asymmetric players’ non-linear-quadratic differential 

games. However, it may be hard to prove its subgame 

perfection. The short-run trajectory may be very 

different from the long-run stationary solution. 

Nevertheless, the strategy’s finite-horizon disadvantage 

itself offers useful information to some differential 

games where unilateral commitments happen. For 

instance, in the case of environmental problem we 

mentioned in Section 3, a short-run committed policy is 

most likely not subgame perfect and hence, introducing 

this kind of policy will not only increase the free riding 

problem, but also hurt the player’s own welfare. 
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For future research, some special care should be 

given to the case where multiple states arise, such as 

Reynolds (1987). It may be the case that even 

committed players only commit to some state variables 

rather than to all. In case of multiple instruments’ 

competition, some of the control variables depend on 

some states and time while the other control variables 

depend on time only. And these differ from our setting 

here. 
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