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Abstract: This paper analyzes two indexes in order to capture the volatility inherent in El Niños Southern Oscillations 
(ENSO), develops the relationship between the strength of ENSO and greenhouse gas emissions, which increase as the 
economy grows, with carbon dioxide being the major greenhouse gas, and examines how these gases affect the 
frequency and strength of El Niño on the global economy. The empirical results show that both the ARMA(1,1)-
GARCH(1,1) and ARMA(3,2)-GJR(1,1) models are suitable for modelling ENSO volatility accurately, and that 1998 is a 
turning point, which indicates that the ENSO strength has increased since 1998. Moreover, the increasing ENSO 
strength is due to the increase in greenhouse gas emissions. The ENSO strengths for Sea Surface Temperature (SST) 
are predicted for the year 2030 to increase from 29.62% to 81.5% if global CO2 emissions increase by 40% to 110%, 
respectively. This indicates that we will be faced with even stronger El Niño or La Niña effects in the future if global 
greenhouse gas emissions continue to increase unabated. 
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1. INTRODUCTION 

The El Niños Southern Oscillations (ENSO) is a 

periodical phenomenon of climatic inter-annual 

variability which has been found to be associated with 

regional variations in climate throughout the world, and 

has important implications for global greenhouse gas 

emissions. ENSO includes three phases, El Niños, La 

Niña, and Neutral, which could be defined through 

either the Southern Oscillation Index (SOI) or the Sea 

Surface Temperature (SST) Index. These ENSO 

phases have been found to have significant impacts on 

global/local agriculture, water, and fishery sectors 

during alternative ENSO phases, strength, and 

frequency. For instance, the relationship between 

ENSO and precipitation, stream flow, floods and 

droughts has been investigated and analyzed (McBride 

and Nicholls 1983; Ropelewski and Halpert 1989; 

Dracup and Kahya 1994; Moss et al. 1994; Piechota 

and Dracup 1996) in recent years, reflecting the 

importance of this topical issue. 

There is an extensive literature devoted to 

estimating the economic impacts of ENSO on the 

agricultural and water sectors, such as Handler and 

Handler (1983), Adams et al. (1995), Adams et al. 

(1999), Solow et al. (1998), Chen and McCarl (2000),  
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Chen, McCarl and Admas (2001), Chen, McCarl and 

Hill (2002), Dilley (1997), Naylor et al. (2001), and 

Brunner (2002). These studies examine not only the 

importance of ENSO information on the agricultural 

economy, but are also linked to fluctuations in ENSO 

and the macro economy (Debelle and Stevens 1995; 

Berry and Admas 2008).  

During the past decade, some attention has been 

transferred to issues of food safety and public health. 

Some notable examples, including Davis (2001), have 

been devoted to the relationship between ENSO 

events and famine, while Kovats et al. (2003) 

investigated the variation in cholera risk in Bangladesh, 

and malaria epidemics in South Asia and South 

America. Other investigations suggest that hurricane 

losses are much greater during a La Niña year in the 

USA (Pielke and Landsea 1999), while Chen, McCarl 

and Admas (2005) used ENSO frequency data to 

investigate Edwards Aquifer water and agricultural 

management on the phases of ENSO.  

The above examples suggest that the damage of 

ENSO events could be mitigated if ENSO information 

could be forecast accurately. For instance, farmers 

could make decisions to change cropping system or 

input usage once ENSO information is obtained before 

planting season. This mitigation based on a firm level 

has been proved by Mjelde and Keplinger (1998)_and 

Hill et al. (2000). Similarly, country could make decision 

to adjust grain stock management or cutting import 

tariff to mitigate the ENSO events when ENSO 
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information is provided. Such mitigation strategies 

based on a national level has been examined by Chen 

and McCarl (2000), Chen, McCarl and Admas (2001), 

Chen, McCarl and Hill (2002). The above examples 

imply that ENSO information, including the strength 

and frequency of ENSO phases, needs to be measures 

and collated accurately. However, ENSO strength and 

frequency have shifted (Timmermann et al., 1999), and 

greenhouse gas emissions may be one such cause. In 

other words, ENSO volatility varies over time. 

The first purpose of this paper is to investigate 

ENSO volatility using generalized autoregressive 

conditional heteroskedasticity (GARCH) time series 

models. Such empirical findings will provide important 

information regarding ENSO volatility. The second 

purpose of the paper is to link the relationship between 

ENSO strength and greenhouse gas emissions, and to 

predict the future ENSO strength based on alternative 

climate change scenarios from IPCC (2007). Such 

empirical findings will provide critical information 

regarding the impact of the possibly stronger El Niño 

and La Niña occurrences in the near future on 

greenhouse gas emissions.  

The remainder of the paper is organized as follows. 

Section 2 presents the empirical models, while Section 

3 discusses the data and descriptive statistics. Section 

4 analyzes the empirical results. The linkages between 

the ENSO strength and greenhouse gas emissions are 

estimated in Section 5. Some concluding remarks are 

given in the final section. 

2. THE MODELS 

Modeling ENSO phases using ARMA and/or ARCH 

models has been considered by Chu and Katz (1985), 

Trenberth and Hoar (1996), and Ahn and Kim (2005). 

Chu and Katz (1985) found that monthly SOI can be 

modelled adequately by AR(3) processes, while 

Trenberth and Hoar (1996) found that an ARMA(3,1) 

model can be fitted for SST by using maximum 

likelihood and Akaike’s Information Criterion (AIC). Ahn 

and Kim (2005) found that ARCH is a more suitable 

model for the SOI series. Each of these studies paid 

attention to either the SOI or SST index, but not both, 

which may misrepresent ENSO characteristics as both 

of these indexes can be used to define ENSO phases. 

On the other hand, although empirical research has 

used time series models, including ARMA, ARCH, and 

GARCH, to analyze the ENSO index, the model 

adequacy of ENSO volatility has not yet been 

examined. 

In order to answer these two questions, the 

generalized autoregressive conditional 

heteroskedasticity (GARCH) model will be applied to 

the SOI and SST indexes. Bai and Perron’s (1998 

2003) approach will be adopted in order to capture the 

structural break point of the ENSO series, which could 

identify alternative time periods for purposes of 

estimating ENSO volatility.  

2.1. Conditional Mean and Conditional Volatility 
Models 

Based on the pioneering work of Engle (1982) in 

capturing time-varying volatility, the autoregressive 

conditional heteroskedasticity (ARCH) model, and 

subsequent developments forming the generalized 

ARCH (GARCH) model of Bollerslev (1986), has been 

used to capture volatility. The GARCH model is most 

wildly used for symmetric shocks, but when asymmetric 

shocks exist, the GJR model of Glosten et al. (1992), or 

the EGARCH model of Nelson (1991), are also 

popular. Some further theoretical developments have 

been suggested by Wong and Li (1997), and Ling and 

McAleer (2002a, 2002b, 2003a, 2003b) and McAleer 

(2005). The volatility models to be used in this section 

have been discussed by, among others, McAleer, Chan 

and Marinova (2007) and Divino and McAleer (2009).  

In this paper, we consider the stationary AR(1)-
GARCH(1,1) or ARMA(p,q)-GARCH(1,1) models for 

the SOI and SST series data, namely yt : 

  
y
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+
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where 
t
 is unconditional shocks (or movements in the 

indices of SOI or SST) are given by: 
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and 0, 0 ,
 

0  are sufficient conditions to 

ensure that the conditional variance 
  
h

t
0 . Ling and 

McAleer (2003b) indicated equation (2) could be 
modified to incorporate a non-stationary ARMA(p,q) 
conditional mean and a stationary GARCH(r,s) 
conditional variance. In (2), the  (or ARCH) effect 

indicates the short run persistence of shocks, while the 

 (or GARCH) effect indicates the contribution of 

shocks to long run persistence (namely, + ).  
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As the GARCH process in equation (2) is a function 

of the unconditional shocks, the moments of 
 t

 need to 

be investigated. Based on the studies of Ling and Li 
(1997) and Ling and McAleer (2002a, 2002b) (see also 
Bollerslev (1986) and Nelson (1990), the necessary 
and sufficient condition for the existence of the second 

moment of 
 t

 for GARCH(1,1) is 
 

+ < 1  and, under 

normality, the necessary and sufficient condition for the 

existence of the fourth moment is 
 
( + )2

+ 2 2
< 1 . 

The effects of a positive shock on the conditional 

variance, h
t
, is assumed to be the same as a negative 

shock of a similar magnitude in the symmetric GARCH 
model. In order to accommodate asymmetric behavior, 
Glosten et al. (1992) proposed the GJR model, for 
which GJR(1,1) is defined as follows: 

  
h

t
= + ( + I(

t 1
))

t 1

2
+ h

t 1
,          (3) 

where  > 0 , 0 ,
 

+ 0 ,
 

0  are sufficient 

conditions for h
t
> 0  and I(

t
) is an indicator variable 

defined by 

  

I(
t
) =

1

0
 

  

t

< 0.

t
0,

 

as 
 t

 has the same sign as 
 t

. The indicator variable 

differentiates between positive and negative shocks, so 
that asymmetric effects in the data are captured by the 
coefficient , with the expectation that 0. The 

asymmetric effect, , measures the contribution of 

shocks to both short run persistence, 
 

+ / 2 , and to 

long run persistence, 
 

+ + / 2 . As the ARCH effect, 

, must be negative for leverage, in which positive 

shocks decrease volatility while negative shocks of 
equal magnitude increase volatility, leverage is not 
possible for the GJR model. 

Ling and McAleer (2002b) derived the unique strictly 
stationary and ergodic solution of a family of GARCH 
processes, which includes GJR(1,1) as a special case, 
a simple sufficient condition for the existence of the 
solution, and the necessary and sufficient condition for 
the existence of the moments. For the special case of 
GJR(1,1), Ling and McAleer (2002b) showed that the 
regularity condition for the existence of the second 

moment under symmetry of 
 t

 is 

 
+ +

1

2
< 1,             (4) 

and the condition for the existence of the fourth 

moment under normality of 
 t

 is 

 

2
+ 2 + 3 + + 3 +

3

2

2
< 1,          (5) 

while McAleer, Chan and Marinova (2007) showed that 
the weaker log-moment condition for GJR(1,1) was 
given by 

E(ln[( + I( t )) t
2
+ ]) < 0 ,          (6) 

which involves the expectation of a function of a 
random variable and unknown parameters.  

An alternative model to capture asymmetric 
behavior in the conditional variance is the Exponential 
GARCH (EGARCH(1,1)) model of Nelson (1991), 
namely: 

  
log h

t
= +

t 1
+

t 1
+ log h

t 1
,
 

< 1         (7) 

where the parameters ,  and  have different 

interpretations from those in the GARCH(1,1) and 
GJR(1,1) models. Leverage is possible in the EGARCH 
model as it depends on the respective magnitudes of 

 and . 

As noted in McAleer et al. (2007), there are some 
important differences between EGARCH and the 
previous two models, as follows: (i) EGARCH is a 
model of the logarithm of the conditional variance, 
which implies that no restrictions on the parameters are 

required to ensure 
  
h

t
> 0 ; (ii) Nelson (1991) showed 

that 
 

< 1  ensures stationarity and ergodicity for 

EGARCH(1,1); (iii) Shephard (1996) observed that 

 
< 1  is likely to be a sufficient condition for 

consistency of QMLE for EGARCH(1,1); (iv) as the 
conditional (or standardized) shocks appear in equation 

(3), 
 

< 1  would seem to be a sufficient condition for 

the existence of moments; and (v) in addition to being a 

sufficient condition for consistency, < 1  is also likely 

to be sufficient for asymptotic normality of the QMLE of 
EGARCH(1,1). 

Furthermore, EGARCH captures asymmetries 
differently from GJR. The parameters and  in 

EGARCH(1,1) represent the magnitude (or size) and 
sign effects of the conditional (or standardized) shocks, 
respectively, on the conditional variance, whereas  

and +  represent the effects of positive and 

negative shocks, respectively, of a similar magnitude 
on the conditional variance in GJR(1,1). 

2.2. Modelling Structural Breaks 

The strength, duration, and frequency of ENSO 

phases have increased during the last two decades 
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(Trenberth and Hoar 1996; Hall, Shalin and Teräsvirta 

2001), which suggests that there may have been 

structural breaks in ENSO. Much research related to 

structural breakpoints has been undertaken by Quandt 

(1958), Chow (1960) Andrews (1993), and Hansen 

(2001), which need a priori break points before 

implementation. However, the approach by Bai and 

Perron (1998, 2003) (hereafter BP) does not need the 

a priori assumption of break points. 

The BP method provides a comprehensive 

treatment based on the following steps. First, consider 

the supF( i | 0 ) type tests (that is, a series of Wald 

tests) of a non- structural break (i=0) against i=k 

breaks. This test requires a pre-specification of a 

number of breaks for inference, and then to use the 

double maximum test (UDmax and WDmax) of the null 

hypothesis of no structural break against an unknown 

number of breaks. These tests are used to determine if 

there is at least one structural break, while the 

structural break is determined endogenously. In this 

paper, the maximum number of breaks (i) is chosen to 

be 5, which is based on the (LWZ) criterion (Liu, Wu 

and Zidek 1997).  

Following the estimation approach of Bai and 

Perron (1998, 2003), if these tests show evidence of at 

least one structural break, then the number of breaks 

can be determined by using the supF( i+1| i) test, which 

performs parameter constancy tests for every 

subsample obtained by cutting off at the estimated 

breaks, and then by adding a break to a sub-sample 

associated with a rejection. This process is repeated by 

increasing i sequentially until the test fails to reject the 

null hypothesis of no additional structural breaks.  

3. DATA AND DESCRIPTIVE STATISTICS 

The most common indexes to describe ENSO 

phases are referred to as the Southern Oscillation 

Index (SOI) and Sea Surface Temperature (SST) 

Index, which are monthly data sets. SOI is calculated 

from the monthly inverse variations in the air pressure 

difference between Tahiti (17.5˚S, 149.6˚W) in the 

South Pacific Ocean and Darwin (12.4˚S, 130.9˚W) in 

northern Australia. Positive values of the SOI are 

popularly known as a La Niña phase, while negative 

values are called El Niño. SST is the water temperature 

close to the surface in the Equatorial Pacific Ocean 

(that is, 4 for the region 5°N–5°S, 120°– 170°W). If the 

period during the 5-month rolling means of the monthly 

SST anomalies in the above-mentioned area are at 

least +50C  for at least six consecutive months, this is 

called a Niño year (Trenberth, 1997).  

Figure 1 plots the time series data set for SOI and 

SST. These two graphs indicate periods of high 

volatility followed by others of relatively low volatility, 

which implies that using homoskedastic residuals to 

model volatility behaviour is inappropriate. 

Furthermore, we also find that volatility in the most 

recent periods is higher than in the earlier periods, as 

shown in the left graph of Figure 1, which implies that 

ENSO volatility has been increasing.  

The data sets for the SOI and SST observations are 

collected from the Climate Prediction Center from 

January 1933 to July 2007 and January 1950 to April 

2007, respectively. Table 1 displays the descriptive 

statistics for the SOI and SST series. The SOI series 

has a larger variance than the SST series. The Ljung-

Box Q-statistics for SOI and SST are given as 

 

Figure 1: SOI and SST series. 
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Q(12)=1290.20 and Q(12)=2149.50, respectively, 

which correspond to p-values of the two test statistics 

of less than 5%, thereby suggesting that SOI and SST 

are correlated. In order to test normality, the JB 

Lagrange multiplier test statistic is used. Table 1 shows 

that SOI and SST are not normally distributed, as the 

p-values of the JB statistics are less than 5%.  

Before establishing the volatility model for the SOI 

and SST series, unit roots tests have to be 

implemented to ensure the data of the SOI and SST 

series are stationary. The most common unit root tests 

are those of Dickey and Fuller (1979, 1981), who 

developed tests of the null hypothesis of a unit root 

against the alternative of stationarity. In this paper, the 

augmented Dickey-Fuller (ADF) unit root test is 

calculated for the SOI and SST series. The results of 

the unit root tests are reported in Table 2, which 

indicate that both SOI and SST are stationary at the 

1% significance level, so that the conditional volatility 

models can be used to capture time-varying volatility in 

the underlying data series. 

4. EMPIRICAL RESULTS 

4.1. AR(p) and ARMA(p,q) Processes 

In order to investigate ENSO volatility, a suitable 

time series model needs to be determined that satisfies 

appropriate regularity conditions. The first task is to 

determine the processes for the mean equation. From 

Table 3, the ARMA(1,1) process for the SOI series has 

the smallest Schwarz Bayesian Information Criterion 

(BIC), while ARMA(3,2) has the smallest BIC for the 

SST series. The p-values of the Ljung-Box Q statistics 

of the residuals from the fitted models indicate that 

there is no autocorrelation at the 5% level. The 

estimated ARMA(1,1) and ARMA(3,2) models are seen 

to be appropriate models for the SOI and SST series, 

respectively.  

The specifications of the mean and variance 
equations for SOI and SST are given as follows: 

SOI = ARMA(1,1) +
t
,   

conditional volatility 

=
 

GARCH(1,1), GJR(1,1) or EGARCH(1,1){ } ,  

  
SST = ARMA(3,2) +

t
,  

conditional volatility ={GARCH(1,1), GJR(1,1) or 
EGARCH(1,1)}. 

4.2. Alternative Volatility Models for SOI and SST 

The empirical estimates for alternative volatility 

models for the SOI and SST series are shown in 

Tables 4 and 5. The estimated model for the SOI and 

Table 1: Descriptive Statistics for the SOI and SST Series 

Variables Number of observations Mean Max Min Std Dev Q(p) JB
 

SOI 895 -0.147 2.900 -4.600 1.048 
1290.20 

(0.00) 

30.09 

(0.00) 

SST 691 0.018 2.85 -2.250 0.859 
2149.50 

(0.00) 

19.09 

(0.00) 

Notes:  
1. Q(p) is the Box-Pierce statistic of serial independence. 
2. JB is the Jarque-Bera Lagrange multiplier test of normality. 
3. Values in parentheses denote p-values. 

Table 2: ADF Unit Root Test for SOI and SST Series 

Level First-Difference Level 
Variables 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

SOI -8.17(12)
* 

-8.24(9)
* 

-8.06(9)
* 

-20.60(8)
* 

-20.59(10)
* 

-20.61(7)
* 

SST -7.87(10)
* 

-7.90(10)
*
 -7.86(9)

* 
-15.76(9)

* 
-15.75( 9)

* 
-15.77(8)

* 

Notes: 
1: * represents significance at the 1% level.  
2: Model 1:auxiliary regression equation with only intercept. 
Model 2: auxiliary regression equation with only time trend.  
Model 3: auxiliary regression equation with intercept and time trend.  
3: BIC is the criterion for selecting the optimal lag length, and values in parentheses denote the lag length. 
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SST series for GARCH(1,1) shows that all the 

estimated coefficients satisfy the sufficient regularity 

conditions for the conditional variance to be positive 

(
  
h

t
0 ). Moreover, the log-moment and second 

moment conditions are satisfied for SOI, so the QMLE 

for the two series are consistent and asymptotically 

normal. The estimates for the GJR(1,1) model show 

that SOI and SST satisfy the sufficient conditions for 

conditional volatility and the log-moment condition, 

which indicates that the QMLE of the parameters of the 

conditional volatility models for SOI and SST are 

consistent and asymptotically normal. 

All the  estimates from the EGARCH(1,1) model 

for SOI and SST are less than one in absolute value, 

which indicates that the estimates are likely to be 

consistent and asymptotically normal. As 

EGARCH(1,1) is a model of the logarithm of the 

conditional variance, there is no parametric restriction 

for conditional volatility to be positive. The size effects 

for the SOI and SST series have positive impacts on 

the conditional variance. These estimation results 

indicate that the sign effects have larger impacts than 

the size effects on the conditional variance. 

Furthermore, the appropriate model for the SOI series 

could be chosen by the BIC criterion and the regularity 

conditions. The GARCH (1,1) model for the SOI and 

SST series is the optimal model as it has the smallest 

BIC value. 

Table 3: ARMA(p,q) Models for SOI and SST Series 

SOI SST 

p q BIC p q BIC 

1 0 2.481 1 0 0.573 

1 1 2.387 1 2 0.561 

2 0 2.405 2 1 0.530 

2 2 2.391 2 2 0.531 

3 0 2.392 3 1 0.524 

5 2 2.410 3 2 0.481 

5 4 2.412 3 3 0.490 

6 2 2.421 3 4 0.540 

6 3 2.416 4 1 0.527 

   4 2 0.534 

   4 3 0.538 

 

Table 4: ARMA(1,1) and GARCH, GJR and EGARCH Models for SOI 

Model 
Variable(SOI) 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 

Mean Equation 

AR(1) 0.896(0.021) 0.901(0.019) 0.896(0.019) 

MA(1) -0.477(0.044) -0.474(0.042) -0.471(0.042) 

Variance Equation 

 0.337(0.145) 0.470(0.166) -0.532(0.144) 

 0.103(0.044) 0.202(0.063) 0.245(0.071) 

 0.361(0.152) 0.127(0.267) 0.077(0.043) 

  -0.139(0.072) 0.292(0.261) 

Log moment -0.351 -0.719  

Second moment 0.464 0.127  

BIC 2.399 2.405 2.404 
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4.3. Structural Change  

In order to examine whether structural change 

exists for the SOI series, the BP approach is 

implemented, and the estimates are shown in Table 6. 

The Table shows that the values of UDmax and WDmax 

are greater than the 5% critical value, which indicates 

the probable existence of structural breaks. As the 

values of F(1|0), F(2|0), F(3|0), F(4|0), F(5|0) exceed 

the critical value at the 5% significance level, while the 

sequential supF(i+1|i) exhibits significance only for i=1, 

this suggests there is only one break in the SOI series, 

which occurs at 1998(4). 

The empirical results show there is a structural 

break for the SOI series in 1998. Based on either the 

Table 5: ARMA(3,2) and GARCH, GJR and EGARCH models for SST 

Model 
Variable(SST) 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 

Mean Equation 

AR(1) 0.823(0.045)  0.849(0.032)  0.858(0.029)  

AR(2) 0.957(0.006)  0.955(0.006)  0.958(0.005)  

AR(3) -0.846(0.041)  -0.866(0.029)  -0.876(0.026)  

MA(1) 0.233(0.060)  0.188(0.048)  0.179(0.044)  

MA(2) -0.762(0.059)  -0.807(0.048)  -0.816(0.044)  

Variance Equation 

 0.003(0.045) 0.051(0.051)  -1.667(0.450)  

 0.034(0.006) 0.179(0.092)  0.400(0.095)  

 0.930(0.059) 0.224(0.110) 0.447(0.053) 

  0.125(0.177) -0.067(0.176)  

Log moment -0.015 -0.712  

Second moment 0.963 0.466  

BIC 0.483 0.488 0.485 

Note: Values in parentheses denote standard errors. 

Table 6: Results of SOI for Structural Break Tests 

Statistics
 

Test Hypothesis 

SOI Critical value
a 

UDmax H0:m=0 H1:m>0 13.14 
* 

8.88 

WDmax H0:m=0 H1:m>0 13.14 
* 

9.91 

H0:m=0 H1:m=1 13.14 
* 

8.58 

H0:m=0 H1:m=2 8.04
* 

7.22 

H0:m=0 H1:m=3 7.37
*
 5.96 

H0:m=0 H1:m=4 5.58
*
 4.99 

supF(i|0) Test 

H0:m=0 H1:m=5 4.50
*
 3.91 

supF(2| 1)  7.34
*
 8.58 

supF(3| 2)  2.49 10.13 

supF(4| 3)  2.02 11.14 

supF(i+1| i) Test 

supF(5| 4)  0.00 11.83 

1 0.1662
* 

  

2 0.1889
 

  

3 0.2228   

LWZ 

4 0.2581   

Notes:  
“a” is the critical value at 5%, while “*” represents significance at 5%. 
LWZ(1): denotes the number of breaks chosen by LWZ to be 1. 
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SOI or SST index, the 1997-98 El Niño year was the 

strongest on record for any El Niño over the past 40 

years. For instance, there were 14 El Niño years from 

1950 to 1998, based on the definition of ENSO using 

the SST index. The 3-month rolling means of the SST 

anomalies in the El Niño 3.4 region (5
o
N-5

o
S, 120

o
-

170
o
W)] for 1997-98 is 1.841, is greater than for any 

other El Niño year. Such evidence explains why there 

is a structural break in 1998.  

The strongest SST index in 1997-98 could be the 

result of global greenhouse gases emissions. For 

instance, Timmermann et al. (1999) have shown that 

global warming may cause the strength and frequency 

of ENSO events to change. In other words, the 

continuous growth of greenhouse gas emissions shifts 

the probability of strong El Niño and La Niña events. 

Such a relationship between ENSO strength and global 

greenhouse gas emissions will be examined later.  

4.4. Estimating the ENSO Volatility between two 
Different Structural Breaks  

This sub-section investigates and compares the 

ENSO volatility before and after the structural 

breakpoint. From the estimates of structural change, 

the breakpoint is located at April 1998, which will be 

treated as a boundary to split the sample into two 

periods for the SOI and SST series. In other words, the 

first period is from January 1950 to April 1998, while 

the second period is from May 1998 to July 2007. We 

have estimated the ARMA(1,1)-GARCH(1,1) model for 

SOI and the ARMA(3,2)-GARCH(1,1) model for SST.  

The empirical results of volatility for SOI and SST 

are presented in Table 7. The ARMA(1,1)-GARCH(1,1) 

estimates for SOI suggest that the short run 

persistence of shocks in periods 1 and 2 are 0.008 and 

0.438, respectively, while the long run persistence of 

shocks in periods 1 and 2 are 0.359 and 0.530, 

respectively. The ARMA(3,2)-GARCH(1,1) estimates 

for SST suggest that the short run persistence of 

shocks in periods 1 and 2 are 0.255 and 0.046, 

respectively, while the long run persistence of shocks 

in periods 1 and 2 are 0.402 and 0.706, respectively. 

Both SOI and SST have larger long run persistence of 

shocks during the second period from May 1998. The 

estimates show that ENSO volatility has increased 

since 1998, which implies that the ENSO strength and 

frequency have increased recently. In other words, the 

ENSO strength using SOI and SST during the period 

1998 to 2007 has increased by 47% and 75%, 

respectively, which is consistent with the findings in 

Timmermann et al. (1999).  

Table 7: Estimates of ENSO Volatility for Different Periods 

SOI SST 
 

Period 1 Period 2 Period 1 Period 2 

Mean Equation 

AR(1) 0.905 

(0.024) 

0.869 

(0.044) 

0.890 

(0.023) 

0.287 

(0.245) 

AR(2) 
 

 0.960 

(0.010) 

0.709 

(0.111) 

AR(3)   -0.899 

(0.021) 

-0.168 

(0.196) 

MA(1) -0.453 

(0.051) 

-0.439 

(0.141) 

0.112 

(0.033) 

1.015 

(0.255) 

MA(2)   -0.880 

(0.036) 

0.177 

(0.231) 

Variance Equation 

 0.363 

(0.243) 

0.413 

(0.236) 

0.058 

(0.017) 

0.015 

(0.015) 

 0.008 

(0.053) 

0.438 

(0.210) 

0.255 

(0.077) 

0.046 

(0.012) 

 0.351 

(0.408) 

0.092 
(0.279) 

0.147 

(0.190) 

0.660 
(0.316) 

Note: Values in parentheses denote standard errors. 
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5. THE STRENGTH OF ENSO AND GREENHOUSE 
GAS EMISSIONS 

Greenhouse gas emissions increase as the 

economy grows, with carbon dioxide being the major 

greenhouse gas. Increasing carbon dioxide will lead to 

increasing greenhouse gases. The increasing 

concentrations of these greenhouse gases is called the 

greenhouse effect that will lead to global climate 

change as the average temperature of the Earth’s 

surface increases (and hence global warming). Such 

an abnormal increase in temperatures is correlated 

with ENSO events. Based on this, we will analyze the 

relationship between the strength of ENSO and 

greenhouse gas emissions, and examine how these 

gases affect the frequency and strength of El Niño. 

A quantitative definition of El Niño, as originally 

proposed by the Japan Meteorological Agency (JMA), 

and subsequently modified by the Climate Variability 

and Predictability (CLIVAR) project, gives five-month 

rolling means of SST anomalies in the Niño 3.4 region 

(5°N-5°S, 170°W-120°W) that exceed 0.4°C for six 

months or more, based on accepted concepts and 

designed to be consistent with previous recognized 

events. Conversely, La Niña occurs when this index is 

lower than -0.4
o
C for at least six consecutive months. If 

the value of the index lies between -0.4
o
C and 0.4

o
C, it 

represents a normal state. Figure 1 represents a plot of 

SST from January 1950 to March 2005. From the right 

graph of Figure 1, we can easily distinguish which are 

the El Niño / La Niña years. For example, for the period 

1982 to 1983, El Niño was in its warm phase, with the 

Sea Surface temperature above normal. From this plot, 

we observe that SST seems to have gained greater 

strength recently. 

In order to analyze how greenhouse gases 

(especially for carbon dioxide) affect the strength and 

frequency of El Niño and La Niña, we analyze the SST 

and carbon dioxide emissions over the period 1950 to 

2008. Thus, in order to determine whether increasing 

greenhouse gas emissions will lead to a greater 

strength of El Niño/La Niña, we analyze the SST 

anomalies in the Niño 3.4 region’s data base using the 

definition of El Niño and La Niña by JMA and CLIVAR. 

If the value for which the 12-month rolling means of 

SST anomalies in the Niño 3.4 region exceeds 0.4°C 

(or lie below -0.4°C), the dependent variable is 

represented by the absolute value of the mean of the 

months which exceed 0.4°C or lie below -0.4°C. If the 

value for which the 12-month rolling means of SST 

anomalies in the Niño 3.4 region lies between -0.4
o
C 

and 0.4
o
C, the dependent variable is represented by 

0.4. Hence, we would have a large number of 

observations in our sample for which the SST 

anomalies are 0.4, which is an example of censored 

data. 

The Tobit model is a regression model for censored 

distributions, which means there are no observations 

beyond a certain point. If there is a large proportion of 

observations at this censoring point, Ordinary Least 

Squares (OLS) techniques may lead to biased 

estimates. Based on this, we can specify the model as: 

yi = xi + uiifyi
* 0.4oryi

* 0.4   

0.4if 0.4 < yi
*
< 0.4          (8) 

where yi
*  is the value for which the 12-month rolling 

means of SST anomalies lie in the Niño 3.4 region, xi  

is the carbon dioxide emission at time i, and ui  is the 

error term which is assumed to be normally distributed 

with zero mean and variance 2 .  

The estimates from the Tobit regression are 

presented in Table 8. The estimated coefficient shows 

the expected signs that carbon dioxide emissions have 

a positive effect on the value of SST anomalies in the 

Niño 3.4 region. Thus, as carbon dioxide emissions 

increase, the value of SST anomalies in the Niño 3.4 

region will be higher, which explains why the strength 

Table 8: Tobit Regression Results 
 

Tobit Analysis, Limit=0.4 

Variable Coefficient Estimate Standard Error t-Ratio 

CO2 0.0001426 0.00003819 3.734 

Log Likelihood -54.998   

Limit Observation 26   

Non-Limit Observation 33   

Note: Carbon dioxide emissions are measured in millions of tons. 
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of El Niña or La Niña will increase as more greenhouse 

gases are emitted.  

In order to forecast the strength of ENSO using 

future climate change, the estimates from Table 8 with 

future projections of Carbon Dioxide emissions are 

applied. Based on the IPCC (2007) report, global GHG 

emissions are projected to increase by 9.7 to 36.7 

GtCO2-eq (25% to 90%) between 2000 and 2030, while 

CO2 emissions from energy use between 2000 and 

2030 are projected to grow by 40% to 110% over the 

same period. Therefore, an increase of 40% to 110% of 

CO2 emissions is applied in this paper.  

Maddala (1983) shows that the prediction equation 
for the Tobit model can be written as 
E(y)

x j
= ( ' x / ) j , where  is the standard error of 

the estimated equation and  is the cumulate 
distribution function. The forecast of ENSO strength in 
2030 will increase by 29.62% to 81.5% if global CO2 
emissions increase by 40% to 110%, respectively. 
Such empirical results imply that global economy will 
be damaged due to the increasing of ENSO strength 
and frequency if CO2 emissions with its concentration 
continue grows. Therefore, the basic strategy to 
mitigate such damage is to reduce CO2 emissions in 
the near future.  

6. CONCLUDING REMARKS 

Three major contributions of this paper are as 

follows. The first finding is to determine an empirically 

adequate model of volatility of the Southern Oscillation 

by checking the regularity conditions of the estimated 

models, and then detecting whether structural breaks 

exist in the climate indexes. The GARCH, GJR and 

EGARCH models were estimated for the SOI and SST 

indexes, to answer the following questions: Under what 

conditions do GARCH-type processes have finite 

moments? Under what conditions are they stationary? 

These questions are important as the existence of 

moments permits verification of theoretical models to 

match stylized facts, such as fat tails and the temporal 

persistence observed in financial data (Carrasco and 

Chen, 2002), as well as economic and environmental 

data, including greenhouse gas emissions and carbon 

pollution data.  

Although there have been many contributions to the 

ARCH/GARCH literature, it seems that until recently 

very little attention has been paid to appropriate model 

selection. Therefore, we conclude that nonlinear 

models are suitable for modelling the SOI and SST 

indexes after checking the regularity conditions.  

In the second task, we tested for structural breaks in 

SOI and SST by using the Bai and Perron (1998, 2003) 

test, and then estimated the volatility of the SOI and 

SST indexes based on the structural breaks. The 

results showed that SOI had a structural break point in 

1998(04). Therefore, we re-estimated the ARMA(1,1)-

GARCH(1,1) model for SOI and the ARMA(3,2)-

GARCH(1,1) for SST to examine volatility with 

1998(04) as a structural change point.  

The results indicated that the contribution of shocks 

to long run persistence of SOI and SST during 

1998(05)-2007(07) was larger than during 1950(01)-

1998(04), such that the volatility of ENSO over the 

decade had become stronger than during the previous 

50 years. In other words, the ENSO strength has 

increased significantly since 1998. Such an increase in 

the ENSO strength may lead to greater damage 

worldwide. Chen et al. (2008) have shown that the 

additional welfare will lead to a loss in the global rice 

market by US$595 million and US$637 million if the 

strength of the El Niño and La Niña events, 

respectively, were to continue to increase unabated. 

Finally, the linkage between ENSO strength and 

carbon dioxide was examined and a positive 

relationship was found. This implies that the strength of 

El Niño or La Niño will increase as more greenhouse 

gases are emitted. Such estimated outcomes with the 

future projections of carbon dioxide emissions are used 

to forecast the strength of ENSO under future climate 

change scenarios. We are able to predict that ENSO 

strength in 2030 will increase by 29.62% to 81.5% if 

global CO2 emissions increase by 40% to 110%, 

respectively. This gives a very strong indication that we 

will faced with far stronger El Niño or La Niña effects in 

the future if global greenhouse gas emissions are not 

brought under greater control, especially as there is 

substantial scientific evidence that these gases affect 

the frequency and strength of the El Niño impact on the 

global economy. 
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