Modification of Nanocrystalline Cellulose for Bioactive Loaded Films

Authors

  • Paula Criado Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS-Institute Armand-Frappier, University of Quebec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
  • Carole Fraschini FPInnovations, 570 boulevard Saint Jean, Pointe-Claire, Quebec, H9R 3J9, Canada
  • Stéphane Salmieri Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS-Institute Armand-Frappier, University of Quebec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
  • Monique Lacroix Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS-Institute Armand-Frappier, University of Quebec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada

DOI:

https://doi.org/10.6000/1929-5995.2014.03.02.7

Keywords:

Food packaging, cellulose nanocrystals, CNC, acetylation, polymer grafting, TEMPO oxidation, layer-by-layer, cationic surfactants, radiation-induced polymer grafting.

Abstract

Despite the use of petrochemical derived packaging, many problems such as browning and food spoilage still happen in food after harvesting. There is an increasing consumers concern for food shelf life to be extended as much as possible along with a big interest in green and bioactive materials, that could be used in direct contact with aliments. In order to reach public demand, biopolymers coming from natural sources such as plants or animals have been used to replace synthetic materials. Even though natural polymers are biodegradable, they do not reach regulations required with respect to mechanical properties in commercial applications. However, the mechanical properties can be improved when reinforced with nanoparticles. Several reinforcing nanoparticules such as clays, silica or silver have been used for industrial applications, but cellulose nanocrystals (CNCs) are a better choice for food industry due to their biodegradable and biocompatible nature as well as their outstanding potential in improving mechanical and barrier properties of nanocomposites. CNCs consist of anhydroglucopyranose units (AGU) linked together and several functional hydroxyl groups found on its surface. Modifications of the CNC surface chemistry can give to cellulose new functionalities that open the way to the development of new bioactive reinforcement in food packaging. The present review will be focused on covalent and non covalent modifications that can be achieved on surface CNC with the aim of adding functionalities to be applied for food industry.

References

Theron MM, Lues JFR. Organic Acids and Meat Preservation: A Review. Food Rev Int 2007; 23: 141-58. http://dx.doi.org/10.1080/87559120701224964 DOI: https://doi.org/10.1080/87559120701224964

Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 2006; 17: 567-75. http://dx.doi.org/10.1016/j.tifs.2006.04.012 DOI: https://doi.org/10.1016/j.tifs.2006.04.012

Röhr A, Lüddecke K, Drusch S, Müller MJ, Alvensleben RV. Food quality and safety--consumer perception and public health concern. Food Control 2005; 16: 649-55. http://dx.doi.org/10.1016/j.foodcont.2004.06.001 DOI: https://doi.org/10.1016/j.foodcont.2004.06.001

Khan A, Huq T, Khan RA, Riedl B, Lacroix M. Nanocellulose-Based Composites and Bioactive Agents for Food Packaging. Crit Rev Food Sci Nutr 2014; 54: 163-74. http://dx.doi.org/10.1080/10408398.2011.578765 DOI: https://doi.org/10.1080/10408398.2011.578765

Azapagic A, Emsley A, Hamerton I. Polymers: The Environment and Sustainable Development. John Wiley & Sons; 2003. http://dx.doi.org/10.1002/0470865172 DOI: https://doi.org/10.1002/0470865172

Leceta I, Etxabide A, Cabezudo S, de la Caba K, Guerrero P. Bio-based films prepared with by-products and wastes: environmental assessment. J Clean Prod 2014; 64: 218-27. http://dx.doi.org/10.1016/j.jclepro.2013.07.054 DOI: https://doi.org/10.1016/j.jclepro.2013.07.054

Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 2002; 3: 113-26. http://dx.doi.org/10.1016/S1466-8564(02)00012-7 DOI: https://doi.org/10.1016/S1466-8564(02)00012-7

Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, et al. Chitosan as a potential natural compound to control

pre and postharvest diseases of horticultural commodities. Crop Prot 2006; 25: 108-18. http://dx.doi.org/10.1016/j.cropro.2005.03.010 DOI: https://doi.org/10.1016/j.cropro.2005.03.010

Zivanovic S, Chi S, Draughon AF. Antimicrobial Activity of Chitosan Films Enriched with Essential Oils. J Food Sci 2005; 70: M45-M51. http://dx.doi.org/10.1111/j.1365-2621.2005.tb09045.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb09045.x

Azeredo HMC de. Nanocomposites for food packaging applications. Food Res Int 2009; 42: 1240-53. http://dx.doi.org/10.1016/j.foodres.2009.03.019

Suyatma NE, Tighzert L, Copinet A, Coma V. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. J Agric Food Chem 2005; 53: 3950-7. http://dx.doi.org/10.1021/jf048790+ DOI: https://doi.org/10.1021/jf048790+

Ludueña LN, Alvarez VA, Vazquez A. Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 2007; 460-461: 121-9. http://dx.doi.org/10.1016/j.msea.2007.01.104 DOI: https://doi.org/10.1016/j.msea.2007.01.104

Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci 2013; 38: 1629-52. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008 DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.008

Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B. Nanocellulose Materials - Different Cellulose, Different Functionality. Macromol Symp 2009; 280: 60-71. http://dx.doi.org/10.1002/masy.200950608 DOI: https://doi.org/10.1002/masy.200950608

Azeredo HMC de. Nanocomposites for food packaging applications. Food Res Int 2009; 42: 1240-53. http://dx.doi.org/10.1016/j.foodres.2009.03.019 DOI: https://doi.org/10.1016/j.foodres.2009.03.019

Sun D, Zhou L, Wu Q, Yang S. Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Technol-Mater Sci Ed 2007; 22: 677-80. http://dx.doi.org/10.1007/s11595-006-4677-7 DOI: https://doi.org/10.1007/s11595-006-4677-7

Ray S, Quek SY, Easteal A, Chen XD. The Potential Use of Polymer-Clay Nanocomposites in Food Packaging. Int J Food Eng 2006; 2. DOI: https://doi.org/10.2202/1556-3758.1149

Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 2000; 28: 1-63. http://dx.doi.org/10.1016/S0927-796X(00)00012-7 DOI: https://doi.org/10.1016/S0927-796X(00)00012-7

Erdohan ZÖ, Turhan KN. Barrier and mechanical properties of methylcellulose-whey protein films. Packag Technol Sci 2005; 18: 295-302. http://dx.doi.org/10.1002/pts.700 DOI: https://doi.org/10.1002/pts.700

Ye D, Farriol X. Factors influencing molecular weights of methylcelluloses prepared from annual plants and juvenile eucalyptus. J Appl Polym Sci 2006; 100: 1785-93. http://dx.doi.org/10.1002/app.23071 DOI: https://doi.org/10.1002/app.23071

Shih C-M, Shieh Y-T, Twu Y-K. Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 2009; 78: 169-74. http://dx.doi.org/10.1016/j.carbpol.2009.04.031 DOI: https://doi.org/10.1016/j.carbpol.2009.04.031

Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter; 2012. DOI: https://doi.org/10.1515/9783110254600

Sjöström E. Wood Chemistry: Fundamentals and Applications. Gulf Professional Publishing; 1993.

Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005; 6: 612-26. http://dx.doi.org/10.1021/bm0493685 DOI: https://doi.org/10.1021/bm0493685

Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 2010; 110: 3479-500. http://dx.doi.org/10.1021/cr900339w DOI: https://doi.org/10.1021/cr900339w

Rånby BG, Banderet A, Sillén LG. Aqueous Colloidal Solutions of Cellulose Micelles. Acta Chem Scand 1949; 3: 649-50. http://dx.doi.org/10.3891/acta.chem.scand.03-0649 DOI: https://doi.org/10.3891/acta.chem.scand.03-0649

Hamad W. On the Development and Applications of Cellulosic Nanofibrillar and Nanocrystalline Materials. Can J Chem Eng 2006; 84: 513-9. http://dx.doi.org/10.1002/cjce.5450840501 DOI: https://doi.org/10.1002/cjce.5450840501

Letchford, Jackson, Wasserman B, Ye, Hamad W, Burt H. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 2011: 321. DOI: https://doi.org/10.2147/IJN.S16749

De Nooy A e. j., Besemer A c., van Bekkum H. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays-Bas 1994; 113: 165-6. http://dx.doi.org/10.1002/recl.19941130307 DOI: https://doi.org/10.1002/recl.19941130307

Habibi Y, Chanzy H, Vignon MR. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006; 13: 679-87. http://dx.doi.org/10.1007/s10570-006-9075-y DOI: https://doi.org/10.1007/s10570-006-9075-y

Da Silva Perez D, Montanari S, Vignon MR. TEMPO-Mediated Oxidation of Cellulose III. Biomacromolecules 2003; 4: 1417-25. http://dx.doi.org/10.1021/bm034144s DOI: https://doi.org/10.1021/bm034144s

Ouattara B, Sabato SF, Lacroix M. Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). Int J Food Microbiol 2001; 68: 1-9. http://dx.doi.org/10.1016/S0168-1605(01)00436-6 DOI: https://doi.org/10.1016/S0168-1605(01)00436-6

Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M. Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. J Food Prot 2007; 70: 901-8. DOI: https://doi.org/10.4315/0362-028X-70.4.901

Yamanaka S, Sugiyama J. Structural modification of bacterial. Cellulose 2000; 7: 213-25. http://dx.doi.org/10.1023/A:1009208022957 DOI: https://doi.org/10.1023/A:1009208022957

Ghosh K, Srivatsa A, Nirmala N, Sharma T. Development and Application of Fungistatic Wrappers in Food Preservation .2. Wrappers Made by Coating Process. J Food Sci Technol-Mysore 1977; 14: 261-4.

Han JH, Floros JD. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J Plast Film Sheeting 1997; 13: 287-98. DOI: https://doi.org/10.1177/875608799701300405

Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G, Spizzirri UG, et al. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J Agric Food Chem 2009; 57: 5933-8. http://dx.doi.org/10.1021/jf900778u DOI: https://doi.org/10.1021/jf900778u

Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 2009; 10: 1923-30. http://dx.doi.org/10.1021/bm900325t DOI: https://doi.org/10.1021/bm900325t

Spizzirri UG, Parisi OI, Iemma F, Cirillo G, Puoci F, Curcio M, et al. Antioxidant-polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr Polym 2010; 79: 333-40. http://dx.doi.org/10.1016/j.carbpol.2009.08.010 DOI: https://doi.org/10.1016/j.carbpol.2009.08.010

Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007; 18: 567-79. http://dx.doi.org/10.1016/j.jnutbio.2006.10.007 DOI: https://doi.org/10.1016/j.jnutbio.2006.10.007

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84. http://dx.doi.org/10.1016/j.biocel.2006.07.001 DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Liu J, Luo J, Ye H, Zeng X. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol 2012; 50: 767-72. http://dx.doi.org/10.1016/j.fct.2011.11.016 DOI: https://doi.org/10.1016/j.fct.2011.11.016

Jin M, Lu Z, Huang M, Wang Y, Wang Y. Sulfated modification and antioxidant activity of exopolysaccahrides produced by Enterobacter cloacae Z0206. Int J Biol Macromol 2011; 48: 607-12. http://dx.doi.org/10.1016/j.ijbiomac.2011.01.023 DOI: https://doi.org/10.1016/j.ijbiomac.2011.01.023

Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 2010; 17: 299-307. http://dx.doi.org/10.1007/s10570-009-9387-9 DOI: https://doi.org/10.1007/s10570-009-9387-9

Sassi J-F, Chanzy H. Ultrastructural aspects of the acetylation of. Cellulose 1995; 2: 111-27. http://dx.doi.org/10.1007/BF00816384 DOI: https://doi.org/10.1007/BF00816384

Buras EM, Hobart SR, Hamalainen C, Cooper AS. A- Preliminary Report on Fully Acetylated Cotton. Text Res J 1957; 27: 214-22. http://dx.doi.org/10.1177/004051755702700307 DOI: https://doi.org/10.1177/004051755702700307

Braun B, Dorgan JR. Single-Step Method for the Isolation and Surface Functionalization of Cellulosic Nanowhiskers. Biomacromolecules 2009; 10: 334-41. http://dx.doi.org/10.1021/bm8011117 DOI: https://doi.org/10.1021/bm8011117

Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 2000; 25: 677-710. http://dx.doi.org/10.1016/S0079-6700(00)00012-5 DOI: https://doi.org/10.1016/S0079-6700(00)00012-5

Masuda T, Inaba Y, Maekawa T, Takeda Y, Yamaguchi H, Nakamoto K, et al. Simple detection method of powerful antiradical compounds in the raw extract of plants and its application for the identification of antiradical plant constituents. J Agric Food Chem 2003; 51: 1831-8. http://dx.doi.org/10.1021/jf026112m DOI: https://doi.org/10.1021/jf026112m

Ardestani A, Yazdanparast R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem 2007; 104: 21-9. http://dx.doi.org/10.1016/j.foodchem.2006.10.066 DOI: https://doi.org/10.1016/j.foodchem.2006.10.066

Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 2005; 6: 2732-9. http://dx.doi.org/10.1021/bm050222v DOI: https://doi.org/10.1021/bm050222v

Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 2008; 109: 3804-10. http://dx.doi.org/10.1002/app.28418 DOI: https://doi.org/10.1002/app.28418

Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 2008; 9: 91-9. http://dx.doi.org/10.1021/bm700849j DOI: https://doi.org/10.1021/bm700849j

Gabrielska J, Sarapuk J, Przestalski S. Investigations of new bis-ammonium salts with potential biological application. Tenside Surfactants Deterg n.d.; 31: 296-8. DOI: https://doi.org/10.1515/tsd-1994-310505

Block SS. Disinfection, Sterilization, and Preservation. Lippincott Williams & Wilkins; 2001.

Franklin TJ, Snow GA. Biochemistry of antimicrobial action. 3rd edition. 1981: xi + 217 pp.

Kanazawa A, Ikeda T, Endo T. Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts. J Polym Sci Part Polym Chem 1993; 31: 335-43. http://dx.doi.org/10.1002/pola.1993.080310205 DOI: https://doi.org/10.1002/pola.1993.080310205

Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. VII. Synthesis and antibacterial activity of polymeric phosphonium salts and

their model compounds containing long alkyl chains. J Appl Polym Sci 1994; 53: 1237-44. http://dx.doi.org/10.1002/app.1994.070530910 DOI: https://doi.org/10.1002/app.1994.070530910

Dizman B, Elasri MO, Mathias LJ. Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds. J Polym Sci Part Polym Chem 2006; 44: 5965-73. http://dx.doi.org/10.1002/pola.21678 DOI: https://doi.org/10.1002/pola.21678

Ignatova M, Voccia S, Gilbert B, Markova N, Mercuri PS, Galleni M, et al. Synthesis of copolymer brushes endowed with adhesion to stainless steel surfaces and antibacterial properties by controlled nitroxide-mediated radical polymerization. Langmuir ACS J Surf Colloids 2004; 20: 10718-26. http://dx.doi.org/10.1021/la048347t DOI: https://doi.org/10.1021/la048347t

Venkataraman S, Zhang Y, Liu L, Yang Y-Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 2010; 31: 1751-6. http://dx.doi.org/10.1016/j.biomaterials.2009.11.030 DOI: https://doi.org/10.1016/j.biomaterials.2009.11.030

Millard P-E, Barner L, Stenzel MH, Davis TP, Barner-Kowollik C, Müller AHE. RAFT Polymerization of N-Isopropylacrylamide and Acrylic Acid under γ-Irradiation in Aqueous Media. Macromol Rapid Commun 2006; 27: 821-8. http://dx.doi.org/10.1002/marc.200600115 DOI: https://doi.org/10.1002/marc.200600115

Quinn JF, Barner L, Rizzardo E, Davis TP. Living free-radical polymerization of styrene under a constant source of γ radiation. J Polym Sci Part Polym Chem 2002; 40: 19-25. http://dx.doi.org/10.1002/pola.10086 DOI: https://doi.org/10.1002/pola.10086

Montanari S, Roumani M, Heux L, Vignon MR. Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation. Macromolecules 2005; 38: 1665-71. http://dx.doi.org/10.1021/ma048396c DOI: https://doi.org/10.1021/ma048396c

Araki J, Wada M, Kuga S. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting. Langmuir 2001; 17: 21-7. http://dx.doi.org/10.1021/la001070m DOI: https://doi.org/10.1021/la001070m

Akhlaghi SP, Berry RC, Tam KC. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 2013; 20: 1747-64. http://dx.doi.org/10.1007/s10570-013-9954-y DOI: https://doi.org/10.1007/s10570-013-9954-y

De Mesquita JP, Donnici CL, Pereira FV. Biobased Nanocomposites from Layer-by-Layer Assembly of Cellulose Nanowhiskers with Chitosan. Biomacromolecules 2010; 11: 473-80. http://dx.doi.org/10.1021/bm9011985 DOI: https://doi.org/10.1021/bm9011985

Wang H, Roman M. Formation and Properties of Chitosan−Cellulose Nanocrystal Polyelectrolyte−Macroion Complexes for Drug Delivery Applications. Biomacromolecules 2011; 12: 1585-93. http://dx.doi.org/10.1021/bm101584c DOI: https://doi.org/10.1021/bm101584c

Ogawa S, Decker EA, McClements DJ. Production and characterization of O/W emulsions containing droplets stabilized by lecithin-chitosan-pectin mutilayered membranes 2004: 3595-600. DOI: https://doi.org/10.1021/jf034436k

Sonia TA, Sharma CP. Chitosan and Its Derivatives for Drug Delivery Perspective. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Chitosan Biomater. I, Springer Berlin Heidelberg; 2011, p. 23-53. http://dx.doi.org/10.1007/12_2011_117 DOI: https://doi.org/10.1007/12_2011_117

Darmadji P, Izumimoto M. Effect of chitosan in meat preservation. Meat Sci 1994; 38: 243-54. http://dx.doi.org/10.1016/0309-1740(94)90114-7 DOI: https://doi.org/10.1016/0309-1740(94)90114-7

Kim KW, Min BJ, Kim Y-T, Kimmel RM, Cooksey K, Park SI. Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT - Food Sci Technol 2011; 44: 565-9. http://dx.doi.org/10.1016/j.lwt.2010.08.001 DOI: https://doi.org/10.1016/j.lwt.2010.08.001

No HK, Meyers SP, Prinyawiwatkul W, Xu Z. Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 2007; 72: R87-100. http://dx.doi.org/10.1111/j.1750-3841.2007.00383.x DOI: https://doi.org/10.1111/j.1750-3841.2007.00383.x

Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003; 4: 1457-65. http://dx.doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m

Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997; 277: 1232-7. http://dx.doi.org/10.1126/science.277.5330.1232 DOI: https://doi.org/10.1126/science.277.5330.1232

Jang W-S, Rawson I, Grunlan JC. Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films 2008; 516: 4819-25. http://dx.doi.org/10.1016/j.tsf.2007.08.141 DOI: https://doi.org/10.1016/j.tsf.2007.08.141

Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363: 1-24. http://dx.doi.org/10.1016/j.jcis.2011.07.017 DOI: https://doi.org/10.1016/j.jcis.2011.07.017

Chen W, McCarthy TJ. Layer-by-Layer Deposition: A Tool for Polymer Surface Modification. Macromolecules 1997; 30: 78-86. http://dx.doi.org/10.1021/ma961096d DOI: https://doi.org/10.1021/ma961096d

Podsiadlo P, Choi S-Y, Shim B, Lee J, Cuddihy M, Kotov NA. Molecularly Engineered Nanocomposites: Layer-by-Layer Assembly of Cellulose Nanocrystals. Biomacromolecules 2005; 6: 2914-8. http://dx.doi.org/10.1021/bm050333u DOI: https://doi.org/10.1021/bm050333u

Peng BL, Dhar N, Liu HL, Tam KC. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can J Chem Eng 2011; 89: 1191-206. http://dx.doi.org/10.1002/cjce.20554 DOI: https://doi.org/10.1002/cjce.20554

Nayyar SP, Sabatini DA, Harwell JH. Surfactant Adsolubilization and Modified Admicellar Sorption of Nonpolar, Polar, and Ionizable Organic Contaminants. Environ Sci Technol 1994; 28: 1874-81. http://dx.doi.org/10.1021/es00060a018 DOI: https://doi.org/10.1021/es00060a018

Hayakawa K, Mouri Y, Maeda T, Satake I, Sato M. Surfactant-modified zeolites as a drug carrier and the release of chloroquin. Colloid Polym Sci 2000; 278: 553-8. http://dx.doi.org/10.1007/s003960050554 DOI: https://doi.org/10.1007/s003960050554

Boufi S, Gandini A. Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 2001; 8: 303-12. http://dx.doi.org/10.1023/A:1015137116216 DOI: https://doi.org/10.1023/A:1015137116216

EUR-Lex - Official Journal n.d.

Infante MR, Pérez L, Pinazo A, Clapés P, Morán MC, Angelet M, et al. Amino acid-based surfactants. Comptes Rendus Chim 2004; 7: 583-92. http://dx.doi.org/10.1016/j.crci.2004.02.009 DOI: https://doi.org/10.1016/j.crci.2004.02.009

Ruckman SA, Rocabayera X, Borzelleca JF, Sandusky CB. Toxicological and metabolic investigations of the safety of N-α-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food Chem Toxicol 2004; 42: 245-59. http://dx.doi.org/10.1016/j.fct.2003.08.022 DOI: https://doi.org/10.1016/j.fct.2003.08.022

Woodcock NH, Hammond BH, Ralyea RD, Boor KJ. Short communication: Nα-Lauroyl-l-arginine ethylester monohydrochloride reduces bacterial growth in pasteurized milk. J Dairy Sci 2009; 92: 4207-10. http://dx.doi.org/10.3168/jds.2009-2150 DOI: https://doi.org/10.3168/jds.2009-2150

Muriel-Galet V, López-Carballo G, Hernández-Muñoz P, Gavara R. Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packag Shelf Life 2014; 1: 10-8. http://dx.doi.org/10.1016/j.fpsl.2013.09.002 DOI: https://doi.org/10.1016/j.fpsl.2013.09.002

Infante M, Pinazo A, Seguer J. Non-conventional surfactants from amino acids and glycolipids: Structure, preparation and properties. Colloids Surf Physicochem Eng Asp 1997; 123-124: 49-70. http://dx.doi.org/10.1016/S0927-7757(96)03793-4 DOI: https://doi.org/10.1016/S0927-7757(96)03793-4

Asker D, Weiss J, McClements DJ. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. J Agric Food Chem 2011; 59: 1041-9. http://dx.doi.org/10.1021/jf103073w DOI: https://doi.org/10.1021/jf103073w

Higueras L, López-Carballo G, Hernández-Muñoz P, Gavara R, Rollini M. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-N(α)-dodecanoyl-l-arginate) and its application to fresh chicken. Int J Food Microbiol 2013; 165: 339-45. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.06.003 DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.06.003

Clapés P, Rosa Infante M. Amino Acid-based Surfactants: Enzymatic Synthesis, Properties and Potential Applications. Biocatal Biotransformation 2002; 20: 215-33. http://dx.doi.org/10.1080/10242420290004947 DOI: https://doi.org/10.1080/10242420290004947

Partouche E, Waysbort D, Margel S. Surface modification of crosslinked poly(styrene-divinyl benzene) micrometer-sized particles of narrow size distribution by ozonolysis. J Colloid Interface Sci 2006; 294: 69-78. http://dx.doi.org/10.1016/j.jcis.2005.07.007 DOI: https://doi.org/10.1016/j.jcis.2005.07.007

Bucio E, Skewes P, Burillo G. Synthesis and characterization of azo acrylates grafted onto polyethylene terephthalate by gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 2005; 236: 301-6. http://dx.doi.org/10.1016/j.nimb.2005.03.262 DOI: https://doi.org/10.1016/j.nimb.2005.03.262

Vahdat A, Bahrami H, Ansari N, Ziaie F. Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam. Radiat Phys Chem 2007; 76: 787-93. http://dx.doi.org/10.1016/j.radphyschem.2006.05.009 DOI: https://doi.org/10.1016/j.radphyschem.2006.05.009

Okubo M, Tahara M, Saeki N, Yamamoto T. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Films 2008; 516: 6592-7. http://dx.doi.org/10.1016/j.tsf.2007.11.033 DOI: https://doi.org/10.1016/j.tsf.2007.11.033

Lei J, Shi M, Zhang J. Surface graft copolymerization of hydrogen silicone fluid onto fabric through corona discharge and water repellency of grafted fabric. Eur Polym J 2000; 36: 1277-81. http://dx.doi.org/10.1016/S0014-3057(99)00169-X DOI: https://doi.org/10.1016/S0014-3057(99)00169-X

Stannett VT. Radiation grafting - State-of-the-art. Radiat Phys Chem 1990; 35: 82-7. DOI: https://doi.org/10.1016/1359-0197(90)90062-M

Nasef MM, Hegazy E-SA. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 2004; 29: 499-561. http://dx.doi.org/10.1016/j.progpolymsci.2004.01.003 DOI: https://doi.org/10.1016/j.progpolymsci.2004.01.003

Cheremisinoff P. Handbook of Engineering Polymeric Materials. CRC Press; 1997. DOI: https://doi.org/10.1201/9781482292183

Chapiro A. Radiation induced grafting. Radiat Phys Chem 1977; 9: 55-67. http://dx.doi.org/10.1016/0146-5724(77)90072-3 DOI: https://doi.org/10.1016/0146-5724(77)90072-3

Kobayashi Y. Gamma-ray-induced graft copolymerization of styrene onto cellulose and some chemical properties of the grafted polymer. J Polym Sci 1961; 51: 359-72. http://dx.doi.org/10.1002/pol.1961.120510122 DOI: https://doi.org/10.1002/pol.1961.1205115522

Barsbay M, Güven O, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L. Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization. Macromolecules 2007; 40: 7140-7. http://dx.doi.org/10.1021/ma070825u DOI: https://doi.org/10.1021/ma070825u

Kodama Y, Barsbay M, Güven O. Radiation-induced and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces. Radiat Phys Chem 2014; 94: 98-104. http://dx.doi.org/10.1016/j.radphyschem.2013.07.016 DOI: https://doi.org/10.1016/j.radphyschem.2013.07.016

Kumar V, Bhardwaj YK, Rawat KP, Sabharwal S. Radiation-induced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities. Radiat Phys Chem 2005; 73: 175-82. http://dx.doi.org/10.1016/j.radphyschem.2004.08.011 DOI: https://doi.org/10.1016/j.radphyschem.2004.08.011

Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A. Radiation grafting on natural films. Radiat Phys Chem 2014; 94: 88-92. http://dx.doi.org/10.1016/j.radphyschem.2013.04.008 DOI: https://doi.org/10.1016/j.radphyschem.2013.04.008

Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, et al. Production and Properties of Nanocellulose-Reinforced Methylcellulose-Based Biodegradable Films. J Agric Food Chem 2010; 58: 7878-85. http://dx.doi.org/10.1021/jf1006853 DOI: https://doi.org/10.1021/jf1006853

Downloads

Published

2014-06-24

How to Cite

Criado, P., Fraschini, C., Salmieri, S., & Lacroix, M. (2014). Modification of Nanocrystalline Cellulose for Bioactive Loaded Films. Journal of Research Updates in Polymer Science, 3(2), 122–135. https://doi.org/10.6000/1929-5995.2014.03.02.7

Issue

Section

Articles