Copper Ion Doped Mullite Composite in Poly (vinylidene Fluoride) Matrix: Effect on Microstructure, Phase Behavior and Electrical Properties

Authors

  • Kumaresh Halder Department of Physics, Jadavpur University, Kolkata- 700 032, India
  • Biplab Kumar Paul Department of Physics, Jadavpur University, Kolkata- 700 032, India
  • Biswajoy Bagchi Fuel Cell and Battery Division, Central Glass and Ceramic Research Institute, Kolkata 700032, India
  • Alakananda Bhattacharya Department of Physics, Jadavpur University, Kolkata- 700 032, India
  • Sukhen Das Department of Physics, Jadavpur University, Kolkata- 700 032, India

DOI:

https://doi.org/10.6000/1929-5995.2014.03.03.3

Keywords:

Polymer, Mullite, Sol–gel technique, XRD, FTIR, Dielectric properties, FESEM.

Abstract

Highly crystallized copper ion doped mullite composites have been synthesized at 1100°C and 1400°C via sol-gel technique with five different strengths of copper ion and was incorporated in poly-vinylidene fluoride (PVDF) to make doped mullite composite/polymer films. We have studied the effects of this dopant on microstructure, phase transformation, and electrical properties of the polymer films over a wide range of frequency from 1.0 KHz to 2.0 MHz. Characterizations were done by various analytical tools at room temperature. Prominent mullite phases were observed from XRD, FTIR spectroscopy and FESEM characterization of composite polymer. The concentration of the dopant and the sintering temperature were found to be the two basic factors which affect the phase transition of the polymer. The composite film showed maximum dielectric constant of 19.96 at 1 KHz for 1.2M concentration of copper ion doped mullite sintered at 1400°C, compared to 3.09 for the pure polymer. Furthermore, both dielectric constant and electrical conductivity of the composite were found to be highly frequency and temperature dependent. After doping, the A.C. conductivity of the composite was found to increase with increasing temperature following Jonscher’s power law and the electrical resistivity reduced too. Moreover, the results revealed that the phase behaviors and micro structural changes of the copper ion doped mullite composite/polymer film affected its electrical properties with possible impact on its applications.

References

Salimi A, Yousefi AA. Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 2003; 22: 699-704. http://dx.doi.org/10.1016/S0142-9418(03)00003-5 DOI: https://doi.org/10.1016/S0142-9418(03)00003-5

Gregorio Jr. R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 2006; 100: 3272-9. http://dx.doi.org/10.1002/app.23137 DOI: https://doi.org/10.1002/app.23137

Lovinger AJ. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J Polym Sci B 1980; 18: 793-809. DOI: https://doi.org/10.1002/pol.1980.180180412

Yang JJ, Pan PJ, Hua L, Zhu B, Dong T, Inoue Y. Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride). Macromolecules 2010; 43: 8610-8. http://dx.doi.org/10.1021/ma1015566 DOI: https://doi.org/10.1021/ma1015566

Sajkiewicz P, Wasiak A, Goclowski Z. Phase transitions during stretching of Poly(vinylidene fluoride). Eur Polym J 1999; 35: 423-9. http://dx.doi.org/10.1016/S0014-3057(98)00136-0 DOI: https://doi.org/10.1016/S0014-3057(98)00136-0

Miller RJ. Single crystals of poly(vinylidene fluoride). Polym Sci Polym Chem 1976; 14: 2325-6. http://dx.doi.org/10.1002/pol.1976.180141216 DOI: https://doi.org/10.1002/pol.1976.180141216

Cortili G, Zerbi G. Chain conformations of polyvinylidene fluoride as derived from its vibrational spectrum. Spectrochem Acta Part A: Mol Spectrosc 1967; 23: 285-99. http://dx.doi.org/10.1016/0584-8539(67)80231-9 DOI: https://doi.org/10.1016/0584-8539(67)80231-9

Dasgupta DK, Doughty KJ. Corona charging and the piezoelectric effect in polyvinylidene fluoride. Appl Phys 1978; 49: 4601-3. http://dx.doi.org/10.1063/1.325441 DOI: https://doi.org/10.1063/1.325441

David GT, McKinney JE, Broadhurst MG, Roth SC. Electric-field-induced phase changes in poly (vinylidene fluoride). J Appl Phys 1978; 49: 4998-5002. http://dx.doi.org/10.1063/1.324446 DOI: https://doi.org/10.1063/1.324446

Welch GJ, Miller RL. Crystallization of poly(vinylidene fluoride): Equilibrium melting point and heat of fusion of the α-polymorph. J Polym Sci Polym Phys 1946; 14: 1683-92. http://dx.doi.org/10.1002/pol.1976.180140913 DOI: https://doi.org/10.1002/pol.1976.180140913

Prest Jr. WM, Luca DJ. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J Appl Phys 1978; 49: 5042-7. http://dx.doi.org/10.1063/1.324439 DOI: https://doi.org/10.1063/1.324439

Li YC, Tjong SC, Li RKY. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids. Express Polym Lett 2011; 5: 526-34. http://dx.doi.org/10.3144/expresspolymlett.2011.51 DOI: https://doi.org/10.3144/expresspolymlett.2011.51

Blythe T, David B. Electrical Properties of Polymers. 2nd Ed. Cambridge University Press; 2005

Dasgupta DK, Doughty KJ. Polymer-ceramic composite materials with high dielectric constants. Thin Solid Films 1988; 158: 93-105. http://dx.doi.org/10.1016/0040-6090(88)90306-9 DOI: https://doi.org/10.1016/0040-6090(88)90306-9

Huang X, Jiang P, Kim C, Liu F, Yin Y. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Euro Polym J 2009; 45: 377-86. http://dx.doi.org/10.1016/j.eurpolymj.2008.11.018 DOI: https://doi.org/10.1016/j.eurpolymj.2008.11.018

Patro TU, Mhalgi MV, Khakhar DV, Misra A. Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers. Polymer 2008; 49: 3486-99. http://dx.doi.org/10.1016/j.polymer.2008.05.034 DOI: https://doi.org/10.1016/j.polymer.2008.05.034

Raja V, Sarma AK, Narasimha Rao VVR. Optical properties of pure and doped PMMA-CO-P4VPNO polymer films. Materials Lett 2003; 57: 4678-83. http://dx.doi.org/10.1016/S0167-577X(03)00384-7 DOI: https://doi.org/10.1016/S0167-577X(03)00384-7

Podgrabinski T, Svorcik V, Mackova A, Hnatowicz V, Sajdl P. Dielectric properties of doped polystyrene and polymethylmethacrylate. J Mater Sci 2006; 17: 871-5. DOI: https://doi.org/10.1007/s10854-006-0040-1

Huang XY, Jiang PK, Kim CU. Electrical properties of polyethylene/aluminum nanocomposites. J Appl Phys 2007; 102: 124103. http://dx.doi.org/10.1063/1.2822336 DOI: https://doi.org/10.1063/1.2822336

Roy D, Bagchi B, Das S, Nandy P. Electric and dielectric properties of sol-gel derived mullite doped with transition metals. Mater Chem Phys 2013; 138: 375-83. http://dx.doi.org/10.1016/j.matchemphys.2012.11.070 DOI: https://doi.org/10.1016/j.matchemphys.2012.11.070

Roy D, Bagchi B, Bhattacharya A, Das S, Nandy P. A Comparative study of densification of sol-gel-derived nano-mullite due to the influence of iron, nickel and copper ions. Int J Appl Ceram Technol 2013; 1. http://dx.doi.org/10.1111/ijac.12114 DOI: https://doi.org/10.1111/ijac.12114

Priya L, Jog J. Poly (vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies. J Polym Sci Part B Polym Phys 2002; 40: 1682-9. http://dx.doi.org/10.1002/polb.10223 DOI: https://doi.org/10.1002/polb.10223

Newman BA, Yoon CH, Pae KD. Piezoelectric activity and field‐induced crystal structure transitions in poled poly(vinylidene fluoride) films. J Appl Phys 1979; 50: 6095. http://dx.doi.org/10.1063/1.325778 DOI: https://doi.org/10.1063/1.325778

Bagchi B, Das S, Bhattacharya A, Basu R, Nandy P. Mullite phase enhancement in Indian kaolins by addition of vanadium pentoxide. Appl Clay Sc 2010; 47: 409-13. http://dx.doi.org/10.1016/j.clay.2009.12.008 DOI: https://doi.org/10.1016/j.clay.2009.12.008

Satapathy S, Gupta PK, Pawar S, Varma KBR. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull Mat Sc 2011; 34: 727-33. http://dx.doi.org/10.1007/s12034-011-0187-0 DOI: https://doi.org/10.1007/s12034-011-0187-0

Boccaccio T, Bottino A, Capanelli G, Piaggio P. Characterization of PVDF membranes by vibrational spectroscopy. J Mem Sc 2002; 210: 315-29. http://dx.doi.org/10.1016/S0376-7388(02)00407-6 DOI: https://doi.org/10.1016/S0376-7388(02)00407-6

Bormashenko Y, Pogreb R, Stanevsky O. [Bormasenko Ed], Vibrational spectrum of PVDF and its interpretation. Polymer Testing 2004, 23: 791-6. http://dx.doi.org/10.1016/j.polymertesting.2004.04.001 DOI: https://doi.org/10.1016/j.polymertesting.2004.04.001

Zhang YY, Jiang SL, Yu Y, Xiong G, Zhang QF, Guang GZ. Phase Transformation Mechanisms and Piezoelectric Properties of Poly (vinylidene fluoride) / Montmorillonite Composite. J Appl Polym Sci 2011; 123(5): 2595-600. http://dx.doi.org/10.1002/app.34431 DOI: https://doi.org/10.1002/app.34431

Padmaja P, Anilkumar GM, Mukundan P, Aruldhas, G, Warrier KGK. Characterization of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy. Int J Inorg Mat 2001; 3: 693-8. http://dx.doi.org/10.1016/S1466-6049(01)00189-1 DOI: https://doi.org/10.1016/S1466-6049(01)00189-1

Tang CW, Li B, Sun L, Lively B, Zhong WH. The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur Polymer J 2012; 48: 1062-72. http://dx.doi.org/10.1016/j.eurpolymj.2012.04.002 DOI: https://doi.org/10.1016/j.eurpolymj.2012.04.002

He F, ST L, Chan HLW, Fan JT. Preparation and characterization of porous poly(vinylidene fluoride-trifluoroethylene) copolymer membranes via electrospinning and further hot pressing. Adv Mat 2009; 21: 710-5. http://dx.doi.org/10.1002/adma.200801758 DOI: https://doi.org/10.1002/adma.200801758

Dang ZM, Shen Y, Nan CW. Dielectric behavior of three-phase percolative Ni–BaTiO 3 /polyvinylidene fluoride Composites. Applied Physics Letters 2002; 81: 4814-6. http://dx.doi.org/10.1063/1.1529085 DOI: https://doi.org/10.1063/1.1529085

Kulek J, Szafraniak I, Hilczer B, Poomska M. Dielectric and pyroelectric response of PVDF loaded with BaTiO3 obtained by mechanosynthesis. J Non-Crystalline Solids 2007; 353: 4448-52. http://dx.doi.org/10.1016/j.jnoncrysol.2007.02.077 DOI: https://doi.org/10.1016/j.jnoncrysol.2007.02.077

Cheng KC, Lin CM, Wang SF, Lin ST, Yang CF. Dielectric properties of epoxy resin–barium titanate composites at high frequency. Materials Lett 2007; 61: 757-60. http://dx.doi.org/10.1016/j.matlet.2006.05.061 DOI: https://doi.org/10.1016/j.matlet.2006.05.061

Newman BA, Scheinbeim JI, Yoon CH, Pae KD. Polarization Mechanisms in Phase I1 Poly(viny1idene fluoride) Films. Macromolecules 1983; 16: 60-8. http://dx.doi.org/10.1021/ma00235a012 DOI: https://doi.org/10.1021/ma00235a012

Jafar HI, Ali NA, Shawky A. Study of A.C electrical properties of aluminum–epoxy composites. J Al-Nahrain Univ 2011; 14: 77-82. DOI: https://doi.org/10.22401/JNUS.14.3.11

Gh. Abdulla O, Aziz BK, Saeed AO. Kaolin light concentration effects on the dielectric properties of polyvinyl alcohol films. Int J Sc and Adv Technol 2012; 2: 65-70.

Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/ thermo/thercond.html.

Downloads

Published

2014-10-20

How to Cite

Halder, K., Paul, B. K., Bagchi, B., Bhattacharya, A., & Das, S. (2014). Copper Ion Doped Mullite Composite in Poly (vinylidene Fluoride) Matrix: Effect on Microstructure, Phase Behavior and Electrical Properties. Journal of Research Updates in Polymer Science, 3(3), 157–169. https://doi.org/10.6000/1929-5995.2014.03.03.3

Issue

Section

Articles