Mechanical Recycling of PET Waste from Non-Woven Fabrics by Reactive Extrusion with Chain Extenders

Authors

  • Breno Heins Bimestre University of São Paulo – USP, Engineering School of Lorena – EEL, Department of Materials Engineering- LOM, Polo Urbo-Industrial, CEP 12602-810, Lorena - SP, Brazil
  • Clodoaldo Saron University of São Paulo – USP, Engineering School of Lorena – EEL, Department of Materials Engineering- LOM, Polo Urbo-Industrial, CEP 12602-810, Lorena - SP, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2014.03.03.4

Keywords:

PET, recycling, diisocyanate, phosphite, PMDA, chain extender.

Abstract

Mechanical recycling of poly (ethylene terephthalate) (PET) is an important industrial activity with direct effect for environmental saving. However, recycled PET (R-PET) undergoes progressive degradation during each recycling process, leading to considerable loss of properties such as mechanical, thermal and melting strength. Chain extenders have been successfully used to increase molecular weight of R-PET, improving process ability and mechanical performance of the material. The aims of this work was to evaluate the performance of the compounds polymeric methylene diphenyldiisocyanate (PMDI) and bis-(2,4-di-t-butylphenol) pentaerythritoldiphosphite (Irgafos®126) for potential use as chain extenders when compared to the traditional chain extender pyromelliticdianhydride (PMDA). Tensile testing, differential exploratory calorimetry, viscometry and dynamic rheometry were used to evaluate changes in mechanical properties, crystallinity, molecular weight and rheological properties of R-PET. PMDI showed effective action on increase in molecular weight and improvements in mechanical and rheological properties of R-PET, while Irgafos 126 causes depreciation of properties of the R-PET after initially to increase the molecular weight of the polymer. Thus, the use of PDMI as chain extension can represent an important alternative for mechanical recycling of highly degraded PET.

References

Buccella M, Dorigato A, Pasqualini E, Caldara M, Fambri L. Chain extension behavior and thermo-mechanical properties of polyamide 6 chemically modified with 1,1′-carbonyl-bis-caprolactam. Polym Eng Sci 2014; 54: 158-65. http://dx.doi.org/10.1002/pen.23547 DOI: https://doi.org/10.1002/pen.23547

Fukushima K, Lecuyer JM, Wei DS, et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym Chem 2013; 4: 1610-6. http://dx.doi.org/10.1039/c2py20793a DOI: https://doi.org/10.1039/C2PY20793A

Ferreira CT, Perez CAB, Hirayama D, Saron C. Recycling of polyamide (PA) from scrap tires as composites and blends. J Environ Chem Eng 2013; 1: 762-7. http://dx.doi.org/10.1016/j.jece.2013.07.016 DOI: https://doi.org/10.1016/j.jece.2013.07.016

Bimestre BH, Saron C. Chain extension of poly (ethylene terephthalate) by reactive extrusion with secondary stabilizer. Mater Res 2012; 15: 467-72. http://dx.doi.org/10.1590/S1516-14392012005000058 DOI: https://doi.org/10.1590/S1516-14392012005000058

Capone C, Di Landro L, Inzoli F, Penco M, Sartore L. Thermal and mechanical degradation during polymer extrusion processing. Polym Eng Sci 2007; 47: 1813-9. http://dx.doi.org/10.1002/pen.20882 DOI: https://doi.org/10.1002/pen.20882

Garrido-Lopez A, Sancet I, Montanõ P, González R, Tena MT. Microwave-assisted oxidation of phosphite-type antioxidant additives in polyethylene film extracts. J Chromatogr A 2007; 1175: 154-61. http://dx.doi.org/10.1016/j.chroma.2007.10.045 DOI: https://doi.org/10.1016/j.chroma.2007.10.045

Dias ML, Nascimento CR. Thermal properties of post-consumer PET processed in presence of phosphites. J Thermal Anal Calorim 2002; 69: 551-9. http://dx.doi.org/10.1023/A:1019963923884 DOI: https://doi.org/10.1023/A:1019963923884

Awaja F, Daver F, Kosior E. Recycled poly(ethylene terephthalate) chain extension by a reactive extrusion process. Polym Eng Sci 2004; 44: 1579-87. http://dx.doi.org/10.1002/pen.20155 DOI: https://doi.org/10.1002/pen.20155

Xiao L, Wang H, Qian Q, et al. Molecular and structural analysis of epoxide-modified recycled poly(ethylene terephthalate) from rheological data. Polym Eng Sci 2012; 52: 2127-33. http://dx.doi.org/10.1002/pen.23175 DOI: https://doi.org/10.1002/pen.23175

Awaja F, Pavel D. Recycling of PET. Eur Polym J 2005; 41: 1453-77. http://dx.doi.org/10.1016/j.eurpolymj.2005.02.005 DOI: https://doi.org/10.1016/j.eurpolymj.2005.02.005

Nascimento CR, Azuma C, Bretãs R, Farah M, Dias ML. Chain extension reaction in solid-state polymerization of recycled PET: The influence of 2,2′-bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci 2010; 115: 3177-88. http://dx.doi.org/10.1002/app.31400 DOI: https://doi.org/10.1002/app.31400

Cavalcanti FN, Teófilo ET, Rabello MS, Silva SML. Chain extension and degradation during reactive processing of PET in the presence of triphenyl phosphite. Polym Eng Sci 2007; 47: 2155-63. http://dx.doi.org/10.1002/pen.20912 DOI: https://doi.org/10.1002/pen.20912

Kiliaris P, Papaspyrides CD, Pfaendner R. Reactive-extrusion route for the closed-loop recycling of poly(ethylene terephthalate). J Appl Polym Sci 2007; 104: 1671-8. http://dx.doi.org/10.1002/app.25795 DOI: https://doi.org/10.1002/app.25795

Tang X, Guo W, Yin G, Li B, Wu C. Reactive extrusion of recycled poly(ethylene terephthalate) with polycarbonate by addition of chain extender. J Appl Polym Sci 2007; 104: 2602-7. http://dx.doi.org/10.1002/app.24410 DOI: https://doi.org/10.1002/app.24410

Xu X, Ding Y, Qian Z, et al. Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polym Degrad Stab 2009; 94: 113-23. http://dx.doi.org/10.1016/j.polymdegradstab.2008.09.009 DOI: https://doi.org/10.1016/j.polymdegradstab.2008.09.009

Kong Y, Hay JN. The measurement of the crystallinity of polymers by DSC. Polymer 2002; 43: 3873-8. http://dx.doi.org/10.1016/S0032-3861(02)00235-5 DOI: https://doi.org/10.1016/S0032-3861(02)00235-5

American Society for Testing and Materials – ASTM STP 1402: Materials Caracterization by Dynamic and Modulated Thermal Analytical Techniques, West Conshohocken, 2001. DOI: https://doi.org/10.1520/STP1402-EB

Mancini SD, Matos IG, Almeida RF. Determinação da variação da viscosidade intrínseca do poli (Tereftalato de Etileno) de embalagens. Polímeros: Ciéncia e Tecnología 2004; 14: 69-73. http://dx.doi.org/10.1590/S0104-14282004000200008 DOI: https://doi.org/10.1590/S0104-14282004000200008

American Society for Testing and Materials - ASTM D 4603-03: Standard test method for determining inherent viscosity of poly(ethylene terephthalate) (PET) by glass capillary viscometer, West Conshohocken, 2003.

Sanches NB, Dias ML, Pacheco EBAV. Comparative techniques for molecular weight evaluation of poly (ethylene terephthalate) (PET). Polym Testing 2005; 24: 688-93. http://dx.doi.org/10.1016/j.polymertesting.2005.05.006 DOI: https://doi.org/10.1016/j.polymertesting.2005.05.006

American Society for Testing and Materials - ASTM D 2857: Standard practice for dilute solution viscosity of polymer, West Conshohocken, 2007.

Santoro G, Gómez MA, Marco C, Ellis G. A Solvent-Free Dispersion Method for the Preparation of PET/MWCNT Composites. Macromol Mater Eng 2010; 295: 652-9. http://dx.doi.org/10.1002/mame.200900384 DOI: https://doi.org/10.1002/mame.200900384

Downloads

Published

2014-10-20

How to Cite

Bimestre, B. H., & Saron, C. (2014). Mechanical Recycling of PET Waste from Non-Woven Fabrics by Reactive Extrusion with Chain Extenders. Journal of Research Updates in Polymer Science, 3(3), 170–177. https://doi.org/10.6000/1929-5995.2014.03.03.4

Issue

Section

Articles