A Brief Overview on Ferrite (Fe3O4) Based Polymeric Nanocomposites: Recent Developments and Challenges

Authors

  • O. P. Bajpai Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India
  • D. K. Setua Defence Materials & Stores Research & Development Establishment, Kanpur, India
  • S. Chattopadhyay Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India

DOI:

https://doi.org/10.6000/1929-5995.2014.03.04.1

Keywords:

Optoelectronic, Ferroelectric, Piezeoelectric, Superparamagnetic, Nanocomposites.

Abstract

In this article, we have mainly discussed about ferrite (Fe3O4) and its polymer based nanocomposites. Ferrite particles have become an important research material because of their vast applications in the field of biotechnology, magnetic resonance imaging (MRI), and data storage. It has been observed that ferrite Fe3O4 particles show best performance for size less than 10-30 nm. This happens due to the super paramagnetic nature of such particles. In super paramagnetic range these particles exhibit zero remanence or coercivity. Therefore, various properties of ferrite (Fe3O4) nanoparticles and its polymer nanocomposites are very much dependent on the size, and distribution of the particles in the polymeric matrix. Moreover, it has been also observed that the shape of the nanocrystals plays important role in the determination of their fundamental properties. These particles show instability over longer times due to the formation of agglomerates generated by high surface energies. Therefore, protection strategies such as grafting and coatings with silica/carbon or polymers have been developed to stabilize them chemically. Recently, silylation technique is mainly used for the modification of nanoparticles. Experimentally, it has been observed that nanocomposites composed of polymer matrices and ferrite showed substantial improvements in stiffness, fracture toughness, sensing ability (magnetic as well as electric), impact energy absorption, and electro-catalytic activities to bio-species.

References

Allhoff F, Lin P, Moore D. What is nanotechnology and why does it matter from science to ethics. John Wiley & Sons 2009. DOI: https://doi.org/10.1002/9781444317992

Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotech Biol Med 2005; 1(3): 193-212. http://dx.doi.org/10.1016/j.nano.2005.06.004 DOI: https://doi.org/10.1016/j.nano.2005.06.004

Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer 2008; 49(15): 3187-204. http://dx.doi.org/10.1016/j.polymer.2008.04.017 DOI: https://doi.org/10.1016/j.polymer.2008.04.017

Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS nano 2009; 3: 16-20. http://dx.doi.org/10.1021/nn900002m DOI: https://doi.org/10.1021/nn900002m

Chen Y, Chen H, Shi J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol Pharm 2013. DOI: https://doi.org/10.1021/mp400596v

Auffan M, Rose J, Bottero JV, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41. http://dx.doi.org/10.1038/nnano.2009.242 DOI: https://doi.org/10.1038/nnano.2009.242

Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4(1): 66-80. http://dx.doi.org/10.1016/j.nantod.2008.10.014 DOI: https://doi.org/10.1016/j.nantod.2008.10.014

Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 2008; 47(16): 2930-46. http://dx.doi.org/10.1002/anie.200702505 DOI: https://doi.org/10.1002/anie.200702505

Grimsdale AC, Mullen K. The chemistry of organic nano-materials. Angew Chem Int Ed Engl 2005; 44(35): 5592-629. http://dx.doi.org/10.1002/anie.200500805 DOI: https://doi.org/10.1002/anie.200500805

Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 2005; 15(35-36): 3559-92. http://dx.doi.org/10.1039/b509097k DOI: https://doi.org/10.1039/b509097k

Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez-Romero P. Nanocomposite hybrid molecular materials for application in solid state electrochemical supercapacitors. Adv Funct Mater 2005; 15(7): 1125-33. http://dx.doi.org/10.1002/adfm.200400326 DOI: https://doi.org/10.1002/adfm.200400326

Li S, Meng LM, Toprak MS, Kim K, Muhammed M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 2010; 1. DOI: https://doi.org/10.3402/nano.v1i0.5214

Gao F. Clay/polymer composites: the story. Mater Today 2004; 7(11): 50-5. http://dx.doi.org/10.1016/S1369-7021(04)00509-7 DOI: https://doi.org/10.1016/S1369-7021(04)00509-7

Meredith P, Bettinger CJ, Irimia-Vladu M, Mostert AB, Schwenn PE. Electronic and optoelectronic materials and devices inspired by nature. Rep Prog Phys 2013; 76(3): 034501. http://dx.doi.org/10.1088/0034-4885/76/3/034501 DOI: https://doi.org/10.1088/0034-4885/76/3/034501

Huang et al. Light emitting and light detecting optoelectronic device. United States Patent US 0096616 A1. 2010 Apr.

Star A, Lu Y, Bradley K, Gruner G. Nanotube optoelectronic memory devices. Nano Lett 2004; 4: 1587-91. http://dx.doi.org/10.1021/nl049337f DOI: https://doi.org/10.1021/nl049337f

Suzuki et al. Light emiting diode. United States Patent US 5387804. 1995 Feb.

Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 2004; 4(1): 42-6. http://dx.doi.org/10.1038/nmat1284 DOI: https://doi.org/10.1038/nmat1284

Wang X, Zhi L, Mullen K. Transparent conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008; 8: 323-7. http://dx.doi.org/10.1021/nl072838r DOI: https://doi.org/10.1021/nl072838r

Yang P, Yan R, Fardy M. Semiconductor nanowire: what's next?. Nano Lett 2010; 10(5): 1529-36. http://dx.doi.org/10.1021/nl100665r DOI: https://doi.org/10.1021/nl100665r

Ouyang J, Chu C-W, Chen F-C, Xu Q, Yang Y. High conductivity poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate film and its application in polymer optoelectronic devices. Adv Funct Mater 2005; 15: 203-8. http://dx.doi.org/10.1002/adfm.200400016 DOI: https://doi.org/10.1002/adfm.200400016

Jaffe B. Piezoelectric ceramics. Vol. 3. Elsevier 2012.

Heywang W, Lubitz K, Wersing W. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer 2008. DOI: https://doi.org/10.1007/978-3-540-68683-5

Ok KM, Chi EO, Halasyamani PS. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev 2006; 35(8): 710-7. http://dx.doi.org/10.1039/b511119f DOI: https://doi.org/10.1039/b511119f

Anton SR, Sodano AH. A review of power harvesting using piezoelectric materials. Smart Mater Struct 2007; 16(3): R1-21. DOI: https://doi.org/10.1088/0964-1726/16/3/R01

King-Smith RD, Vanderbilt D. First principles investigation of ferroelectricity in perovskite compounds. Phys Rev B 1994; 49: 5828-44. http://dx.doi.org/10.1103/PhysRevB.49.5828 DOI: https://doi.org/10.1103/PhysRevB.49.5828

Haertling G. Ferroelectric ceramics: history and technology. J Am Ceram Soc 1999; 42(4): 797-818. http://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature 2003; 426(6962): 55-8. http://dx.doi.org/10.1038/nature02018 DOI: https://doi.org/10.1038/nature02018

Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Lanthanum substituted bismuth titanate for use in non-volatile memories. Nat Nanotechnol 1999; 401(6754): 682-4. DOI: https://doi.org/10.1038/44352

Kingon et al. Hybrid metal/metal oxide electrodes for ferroelectric capacitors. United States Patent US 5555486. 1996 Sep.

Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity Nat mater 2007; 6(1): 13-20. http://dx.doi.org/10.1038/nmat1804 DOI: https://doi.org/10.1038/nmat1804

Khomskii DI. Multiferroics: Different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 2006; 306(1): 1-8. http://dx.doi.org/10.1016/j.jmmm.2006.01.238 DOI: https://doi.org/10.1016/j.jmmm.2006.01.238

Whatmore RW. Pyroelectric devices and materials. Rep Prog Phys 1986; 49(12): 1335-86. http://dx.doi.org/10.1088/0034-4885/49/12/002 DOI: https://doi.org/10.1088/0034-4885/49/12/002

Krommer M, Irschik H. A reissner-mindlin type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech 2000; 141(1-2): 51-69. http://dx.doi.org/10.1007/BF01176807 DOI: https://doi.org/10.1007/BF01176807

Inomata A, Kohn K. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5. J Phys Condens Matter 1996; 8(15): 2673-8. http://dx.doi.org/10.1088/0953-8984/8/15/016 DOI: https://doi.org/10.1088/0953-8984/8/15/016

Nelson DF. Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals. J Acoust Soc Am 1978; 63(6): 1738-48. http://dx.doi.org/10.1121/1.381913 DOI: https://doi.org/10.1121/1.381913

Sebald G, Guyomar D, Agbossou A. On thermoelectric and pyroelectric energy harvesting. Smart Mater Struct 2009; 18(12): 125006. http://dx.doi.org/10.1088/0964-1726/18/12/125006 DOI: https://doi.org/10.1088/0964-1726/18/12/125006

Yang Y, Guo W, Pradel KC, et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 2012; 12(6): 2833-8. http://dx.doi.org/10.1021/nl3003039 DOI: https://doi.org/10.1021/nl3003039

Scrymgeour D, Gopalan V, Itagi A, Saxena A, Swart P. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate. Phys Rev B 2005; 71(18): 184110. http://dx.doi.org/10.1103/PhysRevB.71.184110 DOI: https://doi.org/10.1103/PhysRevB.71.184110

Satapathy S, Verma P, Gupta PK, Mukherjee C, Sathe VG, Verma KBR. Structural, dielectric and ferroelectric properties of multilayer lithium tantalate thin films prepared by sol–gel technique. Thin Solid Films. 2011; 519(6): 1803-8. http://dx.doi.org/10.1016/j.tsf.2010.10.016 DOI: https://doi.org/10.1016/j.tsf.2010.10.016

Kodama RH. Magnetic nanoparticles. J Magn Magn Mater 1999; 200(1): 359-72. http://dx.doi.org/10.1016/S0304-8853(99)00347-9 DOI: https://doi.org/10.1016/S0304-8853(99)00347-9

Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. dv Drug Deliv Rev 2008; 60(11): 1252-65. http://dx.doi.org/10.1016/j.addr.2008.03.018 DOI: https://doi.org/10.1016/j.addr.2008.03.018

Gao J, Hongwei G, Bing X. Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications. Acc Chem Res 2009; 42(8): 1097-107. http://dx.doi.org/10.1021/ar9000026 DOI: https://doi.org/10.1021/ar9000026

Hofmann H. Advanced nanomaterials, course support. Powder technology laboratory, IMX, EPFL. 2009.

Stone V, Nowack B, Baun A, et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 2010; 408(7): 1745-54. http://dx.doi.org/10.1016/j.scitotenv.2009.10.035 DOI: https://doi.org/10.1016/j.scitotenv.2009.10.035

Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46(8): 1222-44. http://dx.doi.org/10.1002/anie.200602866 DOI: https://doi.org/10.1002/anie.200602866

Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun 2003; 8: 927-34. http://dx.doi.org/10.1039/b207789b DOI: https://doi.org/10.1039/b207789b

Yi DK, Lee SS, Ying JY. Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 2006; 18(10): 2459-61. http://dx.doi.org/10.1021/cm052885p DOI: https://doi.org/10.1021/cm052885p

Asmatulu R, Zalich MA, Claus RO, Riffle JS. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater 2005; 292: 108-19. http://dx.doi.org/10.1016/j.jmmm.2004.10.103 DOI: https://doi.org/10.1016/j.jmmm.2004.10.103

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021. http://dx.doi.org/10.1016/j.biomaterials.2004.10.012 DOI: https://doi.org/10.1016/j.biomaterials.2004.10.012

Cushing BL, Kolesnichenko VL, Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004; 104(9): 3893-3946. http://dx.doi.org/10.1021/cr030027b DOI: https://doi.org/10.1021/cr030027b

Deoliveira RJ, Brown P, Correia GB, et al. Photoreactive surfactants: a facile and clean route to oxide and metal nanoparticles in reverse micelles. Langmuir 2011; 27(15): 9277-84. http://dx.doi.org/10.1021/la202147h DOI: https://doi.org/10.1021/la202147h

Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 1999; 11(11): 3058-64. http://dx.doi.org/10.1021/cm991018f DOI: https://doi.org/10.1021/cm991018f

Caruso F. Nanoengineering of particle surfaces. Adv Mater 2001; 13: 11-22. http://dx.doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N DOI: https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N

Morel AL, Nikitenko SI, Gionnet K, et al. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2005; 2: 847-56. http://dx.doi.org/10.1021/nn800091q DOI: https://doi.org/10.1021/nn800091q

Bruce IJ, Sen T. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 2005; 21: 7029-35. http://dx.doi.org/10.1021/la050553t DOI: https://doi.org/10.1021/la050553t

Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2002; 2: 183-6. http://dx.doi.org/10.1021/nl015681q DOI: https://doi.org/10.1021/nl015681q

Panja S, Saha B, Ghosh SK, Chattopadhyay S. Synthesis of novel four armed PE-PCL grafted superparamagnetic and biocompatible nanoparticles. Langmuir 2013; 29(40): 12530-40. http://dx.doi.org/10.1021/la401811c DOI: https://doi.org/10.1021/la401811c

Meng H, Li G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013; 54(9): 2199-2221. http://dx.doi.org/10.1016/j.polymer.2013.02.023 DOI: https://doi.org/10.1016/j.polymer.2013.02.023

Hu J, Zhu Y, Huang H, Lu J. Recent advances in shape–memory polymers: Structure, mechanism, functionality, mod-eling and applications. Prog Polym Sci 2012; 37(12): 1720-63. http://dx.doi.org/10.1016/j.progpolymsci.2012.06.001 DOI: https://doi.org/10.1016/j.progpolymsci.2012.06.001

Gao F, Eds. Advances in polymer nanocomposites: Types and applications. Woodhead publishing limited (UK); 2012.

Saralegi A, Fernandes SCM, Alonso-Varona A, et al. Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 2013; 14(12): 4475-82. http://dx.doi.org/10.1021/bm401385c DOI: https://doi.org/10.1021/bm401385c

Yoo HJ, Mahapatra SS, Cho JW. High speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J Phys Chem C 2014; 118(19): 10408-15. http://dx.doi.org/10.1021/jp500709m DOI: https://doi.org/10.1021/jp500709m

Nelson GR. Expansible polyurethane foam. United States Patent US 3284275. 1966 Nov.

Hayashi S, Ishikawa N, Giordano C. High moisture permeability polyurethane for textile applications. J Ind Text 1993; 23(1): 74-83. http://dx.doi.org/10.1177/152808379302300110 DOI: https://doi.org/10.1177/152808379302300110

Tobushi H, Matsui R, Hayashi S, Shimada D. The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams. Smart Mater Struct 2004; 13(4): 881-7. http://dx.doi.org/10.1088/0964-1726/13/4/026 DOI: https://doi.org/10.1088/0964-1726/13/4/026

Gunes IS, Cao F, Jana SC. Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 2008; 49(9): 2223-34. http://dx.doi.org/10.1016/j.polymer.2008.03.021 DOI: https://doi.org/10.1016/j.polymer.2008.03.021

Ashjari M, Mahdavian AR, Ebrahimi NG, Mosleh Y. Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J Inorg Organomet Polym Mater 2010; 20(2): 213-9. http://dx.doi.org/10.1007/s10904-010-9337-x DOI: https://doi.org/10.1007/s10904-010-9337-x

Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N. Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci 2011; 355(2): 312-20. http://dx.doi.org/10.1016/j.jcis.2010.12.016 DOI: https://doi.org/10.1016/j.jcis.2010.12.016

Jayakumar OD, Mandal BP, Majeed J, Lawes G, Naik R, Tyagi AK. Inorganic–organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J Mater Chem C 2013; 1(23): 3710-5. http://dx.doi.org/10.1039/c3tc30216d DOI: https://doi.org/10.1039/c3tc30216d

Prabhakaran T, Hemalatha J. Ferroelectric and magnetic studies on unpoled Poly (vinylidine Fluoride)/Fe3O4 magnetoelectric nanocomposite structures. Mater Chem Phys 2013; 137(3): 781-7. http://dx.doi.org/10.1016/j.matchemphys.2012.09.064 DOI: https://doi.org/10.1016/j.matchemphys.2012.09.064

Huang Z-Q, Zheng F, Zhang Z, Xu H-T, Zhou K-M. The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation. Desalination 2012; 292: 64-72. http://dx.doi.org/10.1016/j.desal.2012.02.010 DOI: https://doi.org/10.1016/j.desal.2012.02.010

Bhatt AS, Bhat DK, Santosh MS. Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J Appl Polym Sci 2011; 119(2): 968-72. http://dx.doi.org/10.1002/app.32796 DOI: https://doi.org/10.1002/app.32796

Xu C, Ouyang C, Jia R, Li Y, Wang X. Magnetic and optical properties of poly(vinylidene difluoride)/Fe3O4 nanocomposite prepared by coprecipitation approach. J Appl Polym Sci 2009; 111(4): 1763-8. http://dx.doi.org/10.1002/app.29194 DOI: https://doi.org/10.1002/app.29194

Frounchi M, Hadi M. Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites. J Reinf Plast Compos 2013; 32(14): 1044-51. http://dx.doi.org/10.1177/0731684413480397 DOI: https://doi.org/10.1177/0731684413480397

Bajpai OP, Panja S, Chattopadhyay S, Setua DK. Nanocomposite based on piezoelectric polymer matrix and magnetic nanoparticles: a step to develop magneto-electric materials. Woodhead Publishing, book chapter 2014 (In Press). DOI: https://doi.org/10.1016/B978-1-78242-308-9.00011-2

Cui C, Du Y, Li T, et al. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J Phys Chem B 2012; 116(31): 9523-31. http://dx.doi.org/10.1021/jp3024099 DOI: https://doi.org/10.1021/jp3024099

Yu C, Zhai J, Li Z, Wan M, Gao M, Jiang L. Water-assisted self-assembly of polyaniline/Fe3O4 composite honeycomb structures film. Thin Solid Films 2008; 516(15): 5107-10. http://dx.doi.org/10.1016/j.tsf.2008.01.017 DOI: https://doi.org/10.1016/j.tsf.2008.01.017

Xuan S, Wang YX, Yu JC, Leung KC. Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites. Langmuir 2009; 25(19): 11835-43. http://dx.doi.org/10.1021/la901462t DOI: https://doi.org/10.1021/la901462t

Yu Q, Shi M, Cheng Y, Wang M, Chen HZ. Fe3O4@Au/polyaniline multifunctional nanocomposites: their preparation and optical, electrical and magnetic properties. Nanotechnology 2008; 19(26): 265702. http://dx.doi.org/10.1088/0957-4484/19/26/265702 DOI: https://doi.org/10.1088/0957-4484/19/26/265702

Zhang H, Xue Z, Jing-Juan X, Chen H-Y. Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 2008; 24: 13748-52. http://dx.doi.org/10.1021/la8028935 DOI: https://doi.org/10.1021/la8028935

Guo Z, Shin K, Karki AB, Young DP, Kaner RB, Hahn HT. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res 2008; 11(6): 1441-52. http://dx.doi.org/10.1007/s11051-008-9531-8 DOI: https://doi.org/10.1007/s11051-008-9531-8

Dey A, De A, De SK. Electrical transport and dielectric relaxation in Fe3O4–polypyrrole hybrid nanocomposites. J Phys Condens Matter 2005; 17(37): 5895-5910. http://dx.doi.org/10.1088/0953-8984/17/37/025 DOI: https://doi.org/10.1088/0953-8984/17/37/025

Hong X, Longlan C, Naihu T, Gu H. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. JACS 2006; 128: 15582-3. http://dx.doi.org/10.1021/ja066165a DOI: https://doi.org/10.1021/ja066165a

Zhong W, Liu P, Tang Z, Wu X, Qiu J. Facile approach for superparamagnetic cnt-Fe3O4/polystyrene tricomponent nanocomposite via synergetic dispersion. Ind Eng Chem Res 2012; 51(37): 12017-24. http://dx.doi.org/10.1021/ie300891h DOI: https://doi.org/10.1021/ie300891h

Zhong W. Ferroferric oxide/polystyrene (Fe3O4/PS) superparamagnetic nanocomposite via facile in situ bulk radical polymerization. Express Polym Lett 2010; 4(3): 183-7. http://dx.doi.org/10.3144/expresspolymlett.2010.23 DOI: https://doi.org/10.3144/expresspolymlett.2010.23

Zhang M, He X, Chen L, Zhang Y. Preparation of IDA-Cu functionalized core–satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. J Mater Chem 2010; 20(47): 10696-704. http://dx.doi.org/10.1039/c0jm01336f DOI: https://doi.org/10.1039/c0jm01336f

Lv G, He F, Wang X, et al. Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 2008; 24: 2151-6. http://dx.doi.org/10.1021/la702845s DOI: https://doi.org/10.1021/la702845s

Zhang CC, Li X, Yang Y, Wang C. Polymethylmethacrylate/ Fe3O4 composite nanofiber membranes with ultra-low dielectric permittivity. Appl Phys A Mater Sci Process 2009; 97(2): 281-5. http://dx.doi.org/10.1007/s00339-009-5378-9 DOI: https://doi.org/10.1007/s00339-009-5378-9

Chiscan O, Dumitru I, Postolache P, Tura V, Stancu A. Electrospun PVC/Fe3O4 composite nanofibers for microwave absorption applications. Mater Lett 2012; 68: 251-4. http://dx.doi.org/10.1016/j.matlet.2011.10.084 DOI: https://doi.org/10.1016/j.matlet.2011.10.084

Downloads

Published

2015-01-02

How to Cite

Bajpai, O. P., Setua, D. K., & Chattopadhyay, S. (2015). A Brief Overview on Ferrite (Fe3O4) Based Polymeric Nanocomposites: Recent Developments and Challenges. Journal of Research Updates in Polymer Science, 3(4), 184–204. https://doi.org/10.6000/1929-5995.2014.03.04.1

Issue

Section

Articles