Covalent Functionalizations of Poly(vinyl chloride) in Tune with Applications: An Update

Authors

  • Saad Moulay Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Chimie Industrielle, Faculté de Technologie, Université Saâd Dahlab de Blida, B. P. 270, Route de Soumâa, 09000, Blida, Algeria

DOI:

https://doi.org/10.6000/1929-5995.2015.04.02.3

Keywords:

Allotropic carbons, Applications, Functionalization, Membranes, Modification, Poly(vinyl chloride), PVC-supported catalysts

Abstract

Poly(vinyl chloride), PVC, stands as one of the best polymer candidates as far as polymeric materials are strongly sought for in our today’s life. Functionalization of poly(vinyl chloride) (PVC) remains an appropriate way to fashion materials for specific applications. Molecules of different functionalities and sizes, up to macromolecules, were affixed to PVC matrix. Graft polymerization led to functionalized PVC with several properties for different applications. Some covalently modified PVCs, mainly with heteroatom-containing and cyclic molecules, proved to be biologically active and efficient scaffolds for enzyme/protein immobilization. Suitable functionalizations of PVC even ensured the effectiveness of the polymers as separative, ion-selective electrode, and fuel cell membranes. Some modifying agents incorporated in PVC made the polymeric materials convenient and reliable for solar cells design. Reactions of PVC with metal chelating molecules engendered PVC-metal complexes that were efficient polymer-supported catalysts for Heck, Sonogashira, and Suzuki-Miyaura coupling reactions. Heavy metal sorbents were also made by tailored functionalization of PVC. Modifications of PVC with allotropic carbon nanoparticles, including fullerene C60, carbon nanotubes, and graphene and their applications in the nanocomposites making are herein discussed. The newly emerged “click chemistry” and “living controlled radical polymerization, LCRP” were exploited in the functionalization of poly(vinyl chloride).

References

Vasita R, Shanmugam K, Katti DS. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem 2008; 8: 341-53. http://dx.doi.org/10.2174/156802608783790893 DOI: https://doi.org/10.2174/156802608783790893

Asadinezhad A, Lehocký M, Sáha P, Mozetič M. Recent progress in surface modification of polyvinyl chloride. Materials 2012; 5: 2937-59. http://dx.doi.org/10.3390/ma5122937 DOI: https://doi.org/10.3390/ma5122937

Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?. Adv Mater 2004; 16: 1151-70. http://dx.doi.org/10.1002/adma.200400719 DOI: https://doi.org/10.1002/adma.200400719

Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008; 49: 5603-21. http://dx.doi.org/10.1016/j.polymer.2008.09.014 DOI: https://doi.org/10.1016/j.polymer.2008.09.014

Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 2011; 40: 1282-95. http://dx.doi.org/10.1039/B921358A DOI: https://doi.org/10.1039/B921358A

Braun D. Poly(vinyl chloride) on the way from the 19th century to the 21st century. J Polym Sci Part A Polym Chem 2004; 42: 578-86. http://dx.doi.org/10.1002/pola.10906 DOI: https://doi.org/10.1002/pola.10906

Endo K. Synthesis and structure of poly(vinyl chloride). Progr Polym Sci 2002; 27: 2021-54. http://dx.doi.org/10.1016/S0079-6700(02)00066-7 DOI: https://doi.org/10.1016/S0079-6700(02)00066-7

Moulay S. Chemical modification of poly(vinyl chloride)-still on the run. Progr Polym Sci 2010; 35: 303-31. http://dx.doi.org/10.1016/j.progpolymsci.2009.12.001 DOI: https://doi.org/10.1016/j.progpolymsci.2009.12.001

Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Intern Ed 2001; 40: 2004-21. http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 DOI: https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

Moulay S, Touati A. Cycloaddition reactions in aqueous systems: a two-decade trend endeavour. C R Chim 2010; 13: 1474-511. http://dx.doi.org/10.1016/j.crci.2010.05.025 DOI: https://doi.org/10.1016/j.crci.2010.05.025

Pasini D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules 2013; 18: 9512-30. http://dx.doi.org/10.3390/molecules18089512 DOI: https://doi.org/10.3390/molecules18089512

Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 2013; 113: 4905-79. http://dx.doi.org/10.1021/cr200409f DOI: https://doi.org/10.1021/cr200409f

Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev 2007; 36: 1249-62. http://dx.doi.org/10.1039/b613014n DOI: https://doi.org/10.1039/B613014N

Evans RA. The rise of azide-alkyne 1,3-dipolar 'click' cycloaddition and its application to polymer science and surface modification. Aust J Chem 2007; 60: 384-95. http://dx.doi.org/10.1071/CH06457 DOI: https://doi.org/10.1071/CH06457

Fournier D, Hoogenboom R, Schubert US. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev 2007; 36: 1369-80. http://dx.doi.org/10.1039/b700809k DOI: https://doi.org/10.1039/b700809k

Robb MJ, Hawker CJ. ‘Click’ chemistry in polymer science: CuAAC and thiol-ene coupling for the synthesis and functionalization of macromolecules. In: Schlüter AD, Hawker CJ, Sakamoto J, editors. Synthesis of polymers: new structures and methods. Weinheim: Wiley-VCH 2012; 2: 923-71. DOI: https://doi.org/10.1002/9783527603978.mst0440

Le Droumaguet B, Velonia K. Click chemistry: a powerful tool to create polymer-based macromolecular chimeras. Macromol Rapid Commun 2008; 29: 1073-89. http://dx.doi.org/10.1002/marc.200800155 DOI: https://doi.org/10.1002/marc.200800155

Moulay S. Review: poly(vinyl alcohol) functionalizations and its applications. Polym Plast Technol Eng. In press

Stuart A, McCallum MM, Fan D, LeCaptain DJ, Lee CY, Mohanty DK. Poly(vinyl chloride) plasticized with succinate esters: synthesis and characterization. Polym Bull 2010; 65: 589-98. http://dx.doi.org/10.1007/s00289-010-0271-4 DOI: https://doi.org/10.1007/s00289-010-0271-4

Braslau R, inventor; The Regents of the University of California, assignee. Polyphthalate plasticizers that do not release endocrine disrupting compounds. United States patent US WO 2013/116818 A1.

Reddy NN, Mohan YM, Varaprasad K, Ravindra S, Vimala K, Raju KM. Surface treatment of plasticized poly(vinyl chloride) to prevent plasticizer migration. J Appl Polym Sci 2010; 115: 1589-97. http://dx.doi.org/10.1002/app.31157 DOI: https://doi.org/10.1002/app.31157

Navarro R, Perrino MP, Tardajos MG, Reinecke H. Phthalate plasticizers covalently bound to PVC: plasticization with suppressed migration. Macromolecules 2010; 43: 2377-81. http://dx.doi.org/10.1021/ma902740t DOI: https://doi.org/10.1021/ma902740t

Earla A, Braslau R. Covalently linked plasticizers: triazole analogues of phthalate plasticizers prepared by mild copper-free “click” reactions with azide-functionalized PVC. Macromol Rapid Commun 2014; 35: 666-71. http://dx.doi.org/10.1002/marc.201300865 DOI: https://doi.org/10.1002/marc.201300865

Braslau R, inventor; The Regents of the University of California, assignee. Polymer plasticizing agents that produce polymers that do not release endocrine disrupting compounds, United States patent US WO 2014/071347 A1.

Yang P, Yan J, Sun H, Fan H, Chen Y, Wang F, Shi B. Novel environmentally sustainable cardanol-based plasticizer covalently bound to PVC via click chemistry: synthesis and properties. RSC Adv 2015; 5: 16980-85. http://dx.doi.org/10.1039/C4RA15527K DOI: https://doi.org/10.1039/C4RA15527K

Chang Y, Pan M, Yuan J, Liu Y, Wang X, Jiang P, Wang Y, Zhong G-J, Li Z-M. Morphology and film performance of phthalate-free plasticized poly(vinyl chloride) composite particles via the graft copolymerization of acrylate swelling flower-like latex particles. RSC Adv 2015; 5: 40076-87. http://dx.doi.org/10.1039/C5RA04747A DOI: https://doi.org/10.1039/C5RA04747A

Bierbrauer K, López-González M, Riande E, Mijangos C. Gas transport in fluorothiophenyl modified PVC membranes. J Membr Sci 2010; 362: 164-71. http://dx.doi.org/10.1016/j.memsci.2010.06.035 DOI: https://doi.org/10.1016/j.memsci.2010.06.035

Corrales M, Bierbrauer K, Sacristan J, Mijangos C. Surface modification of PVC membranes using fluorothiophenol compounds. Macromol Chem Phys 2010; 211: 1990-8. http://dx.doi.org/10.1002/macp.201000322 DOI: https://doi.org/10.1002/macp.201000322

Sacristan JJ, Mijangos C. Free volume analysis and transport mechanisms of PVC modified with fluorothiophenol compounds. A molecular simulation study. Macromolecules 2010; 43: 7357-67. DOI: https://doi.org/10.1021/ma1011045

Su Y, Zhao Q, Liu J, Zhao J, Li Y, Jiang Z. Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalin Water Treat 2014, 1-11. http://dx.doi.org/10.1080/19443994.2014.918903 DOI: https://doi.org/10.1080/19443994.2014.918903

Zhu J, Su Y, Zhao X, Li Y, Zhao J, Fan X, Jiang Z. Improved antifouling properties of poly(vinyl chloride) ultrafiltration membranes via surface zwitterionicalization. Ind Eng Chem Res 2014; 53: 14046-55. http://dx.doi.org/10.1021/ie5022877 DOI: https://doi.org/10.1021/ie5022877

Pawlak M, Grygolowicz-Pawlak E, Bakker E. Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors. Anal Chem 2010; 82: 6887-94. http://dx.doi.org/10.1021/ac1010662 DOI: https://doi.org/10.1021/ac1010662

Pawlak M, Mistlberger G, Bakker E. In situ surface functionalization of plasticized poly(vinyl chloride) membranes by ‘click chemistry’. J Mater Chem 2012; 22: 12796-801. http://dx.doi.org/10.1039/c2jm31118f DOI: https://doi.org/10.1039/c2jm31118f

Pawlak M, Grygolowicz-Pawlak E, Crespo GA, Mistlberger G, Bakker E. PVC-based ion-selective electrodes with enhanced biocompatibility by surface modification with “click” chemistry. Electroanalysis 2013; 25: 1840-46. http://dx.doi.org/10.1002/elan.201300212 DOI: https://doi.org/10.1002/elan.201300212

Jarolímová Z, Crespo GA, Afshar MG, Pawlak M, Bakker E. All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC. J Electroanal Chem 2013; 709: 118-25. http://dx.doi.org/10.1016/j.jelechem.2013.10.011 DOI: https://doi.org/10.1016/j.jelechem.2013.10.011

Sohail M, De Marco R, Alam MT, Pawlak M, Bakker E. Transport and accumulation of ferrocene tagged poly(vinyl chloride) at the buried interfaces of solid-contact plasticized poly(vinyl chloride) based ion-selective membrane electrodes. Analyst 2013; 138: 4266-9. http://dx.doi.org/10.1039/c3an00464c DOI: https://doi.org/10.1039/c3an00464c

Pawlak M, Mistlberger G, Bakker E. Concanavalin A eelectrochemical sensor based on the surface blocking principle at an ion-selective polymeric membrane. Microchim Acta 2015; 182: 129-37. http://dx.doi.org/10.1007/s00604-014-1309-3 DOI: https://doi.org/10.1007/s00604-014-1309-3

Liu Y, Xue Y, Tang H, Wang M, Qin Y. Click-immobilized K+-selective ionophore for potentiometric and optical sensors. Sens Actuators B 2012; 171-172: 556-62. DOI: https://doi.org/10.1016/j.snb.2012.05.033

Pietrzak M, Mroczkiewicz M, Malinowska E. Application of F−-selective ionophores in carboxylated or aminated poly(vinyl chloride)-based membranes of ion-selective electrodes. Electroanalysis 2012; 24: 173-9. http://dx.doi.org/10.1002/elan.201100445 DOI: https://doi.org/10.1002/elan.201100445

Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 2011; 377: 1-35. http://dx.doi.org/10.1016/j.memsci.2011.04.043 DOI: https://doi.org/10.1016/j.memsci.2011.04.043

Couture G, Alaaeddine A, Boschet F, Ameduri B. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Progr Polym Sci 2011; 36: 1521-57. http://dx.doi.org/10.1016/j.progpolymsci.2011.04.004 DOI: https://doi.org/10.1016/j.progpolymsci.2011.04.004

Hu J, Zhang C, Cong J, Toyod H, Nagatsu M, Meng Y. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell. J Power Sources 2011; 196: 4483-90. http://dx.doi.org/10.1016/j.jpowsour.2011.01.034 DOI: https://doi.org/10.1016/j.jpowsour.2011.01.034

Kenaway E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state of the art review. BioMacromolecules 2007; 8: 1359-84. http://dx.doi.org/10.1021/bm061150q DOI: https://doi.org/10.1021/bm061150q

Muñnoz-Bonilla A, Fernández-Garcίa M. Polymeric materials with antimicrobial activity. Progr Polym Sci 2012; 37: 281-339. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.005 DOI: https://doi.org/10.1016/j.progpolymsci.2011.08.005

Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 2012; 4: 46-71. http://dx.doi.org/10.3390/polym4010046 DOI: https://doi.org/10.3390/polym4010046

Lafarge J, Kébir N, Schapman D, Burel F. Design of self-disinfecting PVC surfaces using the click chemistry. React Funct Polym 2013; 73: 1464-72. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.08.001 DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.08.001

Bigot S, Louarn G, Kébir N, Burel F. Facile grafting of bioactive cellulose derivatives onto PVC surfaces. Appl Surf Sci 2013; 283: 411-6. http://dx.doi.org/10.1016/j.apsusc.2013.06.123 DOI: https://doi.org/10.1016/j.apsusc.2013.06.123

Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T. Antibacterial effect of thiocyanate substituted poly(vinyl chloride). J Polym Res 2011; 18: 945-7. http://dx.doi.org/10.1007/s10965-010-9492-3 DOI: https://doi.org/10.1007/s10965-010-9492-3

Merchan M, Sedlarikova J, Vesel A, Sedlarik V, Pastorek M, Sáha P. Characterization of antibacterial, mechanical, and structural properties of polyvinyl chloride/silver nitrate composites prepared by thermoplastic compounding. Intern J Polym Anal Charact 2010; 15: 360-9. http://dx.doi.org/10.1080/1023666X.2010.500534 DOI: https://doi.org/10.1080/1023666X.2010.500534

Merchan M, Sedlaříková J, Sedlařík V, Machovský M, Svobodová J, Sáha P. Antibacterial polyvinyl chloride/antibiotic films: the effect of solvent on morphology, antibacterial activity, and release kinetics. J Appl Polym Sci 2010; 118: 2369-78. http://dx.doi.org/10.1002/app.32185 DOI: https://doi.org/10.1002/app.32185

Asadinezhad A, Novák I, Lehocký M, Sedlařík V, Vesel A, Junkar I, Sáha P, Chodák I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf B 2010; 77: 246-56. http://dx.doi.org/10.1016/j.colsurfb.2010.02.006 DOI: https://doi.org/10.1016/j.colsurfb.2010.02.006

Asadinezhad A, Novák I, Lehocký M, Sedlařík V, Bílek F, Vesel A, Junkar I, Sáha P, Popelka A. Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion. Molecules 2010; 15: 1007-27. http://dx.doi.org/10.3390/molecules15021007 DOI: https://doi.org/10.3390/molecules15021007

Asadinezhad A, Novák I, Lehocký M, Sedlařík V, Vesel A, Junkar I, Sáha P, Chodák I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: irgasan coating. Plasma Process Polym 2010; 7: 504-14. http://dx.doi.org/10.1002/ppap.200900132 DOI: https://doi.org/10.1002/ppap.200900132

Islas L, Alvarez-Lorenzo C, Magariños B, Concheiro A, Felipe del Castillo L, Burillo G. Singly and binary grafted poly(vinyl chloride) urinary catheters that elute ciprofloxacin and prevent bacteria adhesion. Intern J Pharm 2015; 488: 20-8. http://dx.doi.org/10.1016/j.ijpharm.2015.04.036 DOI: https://doi.org/10.1016/j.ijpharm.2015.04.036

Patel M, Patel R, Chi WS, Kim JH, Sung J-S. Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinylpyridine) graft copolymers. Chinese J Polym Sci 2015; 33: 265-74. http://dx.doi.org/10.1007/s10118-015-1577-3 DOI: https://doi.org/10.1007/s10118-015-1577-3

Rabie ST, El-Saidi MMT, Mohamed NR. Synthesis of biologically active and photostable rigid poly(vinyl chloride). J Biomed Mater Res Part A 2012; 100: 3503-10. http://dx.doi.org/10.1002/jbm.a.34279 DOI: https://doi.org/10.1002/jbm.a.34279

Chruściel JJ, Leśniak E. Modification of thermoplastics with reactive silanes and siloxanes. In: El-Sonbati A, editor. Thermoplastic elastomers 2012; Chap. 9: 155-92.

Kregiel D, Berlowska J, Mizerska U, Fortuniak W, Chojnowski J, Ambroziak W. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of aeromonas hydrophila. World J Microbiol Biotechnol 2013; 29: 1197-206. http://dx.doi.org/10.1007/s11274-013-1282-8 DOI: https://doi.org/10.1007/s11274-013-1282-8

Oztuna A, Nazir H, Baysallar M. Simultaneous Bacillus anthracis spores detection via aminated-poly(vinyl chloride) coated piezoelectric crystal immunosensor. J Coatings 2014; Vol. 2014, Article ID 256168, 8 pages. http://dx.doi.org/10.1155/2014/256168 DOI: https://doi.org/10.1155/2014/256168

Naif OA. Modification of poly(vinyl chloride) via introducing of pendent thiadiazole derivatives and study of their biological activity. Al-Mustansiriyah J Sci 2012; 23: 39-54.

Bigot S, Louarn G, Kébir N, Burel F. Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst. Carbohydr Polym 2013; 98: 1644-49. http://dx.doi.org/10.1016/j.carbpol.2013.07.079 DOI: https://doi.org/10.1016/j.carbpol.2013.07.079

Monika S, Mishra RR, Jaiswal S, Kapusetti G, Misra N. Chemical modification of poly (vinyl chloride) sheet with thiourea for cell study. In: Bhardwaj S, Shekhawat MS, Suthar B, editors. Proceedings of international conference on recent trends in applied physics and material science, AIP Conf Proc 2013; 1536: 1157-8. DOI: https://doi.org/10.1063/1.4810648

Monika S, Kumar S, Misra N. Chemical modification of poly(vinyl chloride) by thiourea: influence of surface characteristics. Adv Sci Eng Med 2014; 6: 1167-70. http://dx.doi.org/10.1166/asem.2014.1622 DOI: https://doi.org/10.1166/asem.2014.1622

Monika, Mahto SK, Das S, Ranjan A, Singh SK, Roy P, Misra N. Chemical modification of poly(vinyl chloride) for blood and cellular biocompatibility. RSC Adv 2015; 5: 45231-8. DOI: https://doi.org/10.1039/C5RA03362D

Zou Y, Lai BF, Kizhakkedathu JN, Brooks DE. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion. Macromol Biosci 2010; 10: 1432-43. http://dx.doi.org/10.1002/mabi.201000223 DOI: https://doi.org/10.1002/mabi.201000223

Mohy Eldin MS, Mita DG. Immobilized enzymes: strategies for overcoming the substrate diffusion-limitation problem. Curr Biotechnol 2014; 3: 207-17. http://dx.doi.org/10.2174/221155010303140918114737 DOI: https://doi.org/10.2174/221155010303140918114737

Mohy Eldin MS, El Enshasy HA, El Sayed M, El Sayed S, Haroun B, Hassan EA. Covalent immobilization of penicillin G acylase onto chemically activated surface of poly(vinyl chloride) membranes for 6-penicillic acid production from penicillin hydrolysis process I. Optimization of surface modification and its characterization. J Appl Polym Sci 2012; 124 (S1): E27-E36. http://dx.doi.org/10.1002/app.35390 DOI: https://doi.org/10.1002/app.35390

Mohy Eldin MS, El Enshasy HA, Hassan ME, Haroun B, Hassan EA. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. J Appl Polym Sci 2012; 125: 3820-8. http://dx.doi.org/10.1002/app.36690 DOI: https://doi.org/10.1002/app.36690

Mohy Eldin MS, Elaassar MR, Elzatahry AA, Al‐Sabah MMB, Hassan EA. Covalent immobilization of β‐galactosidase onto amino‐functionalized PVC microspheres. J Appl Polym Sci 2012; 125: 1724-1735. http://dx.doi.org/10.1002/app.35682 DOI: https://doi.org/10.1002/app.35682

Mohy Eldin MS, Elaassar MR, Elzatahry AA, Al‐Sabah MMB. Covalent immobilization of β-galactosidase onto amino-functionalized polyvinyl chloride microspheres: enzyme immobilization and characterization. Adv Polym Technol 2014; 33: 21379. http://dx.doi.org/10.1002/adv.21379 DOI: https://doi.org/10.1002/adv.21379

Li D-F, Ding H-C, Zhou T. Covalent immobilization of mixed proteases, trypsin and chymotrypsin, onto modified polyvinyl chloride microspheres. J Agric Food Chem 2013; 61: 10447-53. http://dx.doi.org/10.1021/jf403476p DOI: https://doi.org/10.1021/jf403476p

Rozum B, Gajownik K, Tymecki Ł, Koncki R. Poly(vinyl chloride) tubing with covalently bound alkaline phosphatase and alternative approach for investigations of open-tubular bioreactors. Anal Biochem 2010; 400: 151-3. http://dx.doi.org/10.1016/j.ab.2010.01.016 DOI: https://doi.org/10.1016/j.ab.2010.01.016

Kondyurin A, Nosworthy NJ, Bilek MMM. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE. Langmuir 2011; 27: 6138-48. http://dx.doi.org/10.1021/la200376f DOI: https://doi.org/10.1021/la200376f

Arenas E, Castillón FF, Farías MH. EDC and sulfo-NHS functionalized on PVC-g-PEGMA for streptokinase immobilization. Des Monom Polym 2012; 15: 369-78. http://dx.doi.org/10.1080/1385772X.2012.686685 DOI: https://doi.org/10.1080/1385772X.2012.686685

Marek P, Senecal K, Nida D, Magnone J, Senecal A. Application of a biotin functionalized QD assay for determining available binding sites on electrospun nanofiber membrane. J Nanobiotechnol 2011; 9:48 (p.7). http://dx.doi.org/10.1186/1477-3155-9-48 DOI: https://doi.org/10.1186/1477-3155-9-48

Gabriel M, Strand D, Vahl C-F. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification. Artif Organs 2012; 36: 839-44. http://dx.doi.org/10.1111/j.1525-1594.2012.01462.x DOI: https://doi.org/10.1111/j.1525-1594.2012.01462.x

Balakrishnan B, Jayakrishnan A. Chemical modification of poly(vinyl chloride) using poly(ethylene glycol) to improve

blood compatibility. Trends Biomater Artif Organs 2005; 18: 230-6. http://dx.doi.org/10.1016/j.biomaterials.2004.09.032 DOI: https://doi.org/10.1016/j.biomaterials.2004.09.032

Finley MJ, Rauova L, Alferiev IS, Weisel JW, Levy RJ, Stachelek SJ. Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials 2012; 33: 5803-11. http://dx.doi.org/10.1016/j.biomaterials.2012.04.051 DOI: https://doi.org/10.1016/j.biomaterials.2012.04.051

Jun D, XiaoLi L, Wei L, ZhaoQiang W, Hong C. One-step preparation of vinyl-functionalized material surfaces: a versatile platform for surface modification. Sci China Chem 2014; 57: 654-60. http://dx.doi.org/10.1007/s11426-014-5067-1 DOI: https://doi.org/10.1007/s11426-014-5067-1

Patel R, Patel M, Ahn SH, Sung YK, Lee H-K, Kim JH, Sung J-S. Bioinert membranes prepared from amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymers. Mater Sci Eng C 2013; 33: 1662-70. http://dx.doi.org/10.1016/j.msec.2012.12.097 DOI: https://doi.org/10.1016/j.msec.2012.12.097

Shu Y, Chen X-W, Wang J-H. Ionic liquid-polyvinyl chloride ionomer for highly selective isolation of basic proteins. Talanta 2010; 81: 637-42. http://dx.doi.org/10.1016/j.talanta.2009.12.059 DOI: https://doi.org/10.1016/j.talanta.2009.12.059

Demirci G, Tasdelen MA. Synthesis and characterization of graft copolymers by photoinduced CuAAC click chemistry. Eur Polym J 2015; 66: 282-9. http://dx.doi.org/10.1016/j.eurpolymj.2015.02.029 DOI: https://doi.org/10.1016/j.eurpolymj.2015.02.029

Iván B, Pálfi V, Szarka G. Novel functional polymers by terminal and pendant functionalizations via thiol-ene and thiol-polyene click reactions. Polym Prepr 2010; 51:715-6.

Akat H, Ozkan M. Synthesis and characterization of poly(vinyl chloride) type macrophotoinitiator comprising side-chain thioxanthone via click chemistry. eXPRESS Polym Lett 2011; 5: 318-26. http://dx.doi.org/10.3144/expresspolymlett.2011.32 DOI: https://doi.org/10.3144/expresspolymlett.2011.32

Karimi B, Behzadnia H, Farhangi E, Jafari E, Zamani A. Recent application of polymer supported metal nanoparticles in Heck, Suzuki and Sonogashira coupling reactions. Curr Org Synth 2010; 7: 543-67. http://dx.doi.org/10.2174/157017910794328538 DOI: https://doi.org/10.2174/157017910794328538

Bakherad M, Keivanloo A, Bahramian B, Siavoshi M. Copper- and solvent-free Sonogashira reaction catalyzed by polyvinyl chloride-supported palladium(II) triazole complex. Letters Org Chem 2013; 10: 758-63. http://dx.doi.org/10.2174/15701786113109990048 DOI: https://doi.org/10.2174/15701786113109990048

Bakherad M, Keivanloo A, Samangooei S, Omidian M. A phenyldithiocarbazate-functionalized polyvinyl chloride resin supported Pd(II) complex as an effective catalyst for solvent- and copper-free Sonogashira reactions under aerobic conditions. J Organomet Chem 2013; 740: 78-82. http://dx.doi.org/10.1016/j.jorganchem.2013.04.058 DOI: https://doi.org/10.1016/j.jorganchem.2013.04.058

Bakherad M, Keivanloo A, Hadi A, Siavoshi M. Copper-free Sonogashira coupling reaction catalyzed by PVC-supported triazine palladium(II) complex under aerobic conditions. Asian J Org Chem 2014; 3: 1189-92. http://dx.doi.org/10.1002/ajoc.201402125 DOI: https://doi.org/10.1002/ajoc.201402125

Bakherad M, Keivanloo A, Samangooei S. Poly(vinyl chloride)-supported Pd(II) complex as an efficient catalyst for Heck and Cu-free Sonogashira reactions under aerobic conditions. Chinese J Catal 2014; 35: 324-8. http://dx.doi.org/10.1016/S1872-2067(12)60746-3 DOI: https://doi.org/10.1016/S1872-2067(12)60746-3

Zhang L, Xue M, Cui Y. Catalytic performance of PVC-triethylene-tetramine supported palladium complex for Heck reaction. J Appl Polym Sci 2010; 115: 2523-7. http://dx.doi.org/10.1002/app.31182 DOI: https://doi.org/10.1002/app.31182

Shao L, Qi C, Zhang X-M. Aminated chlorinated polyvinylchloride nanofiber mat-supported palladium heterogeneous catalysts: preparation, characterization and application. RSC Adv 2014; 4: 53105-8. http://dx.doi.org/10.1039/C4RA08469A DOI: https://doi.org/10.1039/C4RA08469A

Zhou B, Li Y-Q. Palladium nanoparticles immobilized on poly(vinyl chloride)-supported pyridinium as an efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reaction. E-J Chem 2011; 8: 1490-7. http://dx.doi.org/10.1155/2011/313102 DOI: https://doi.org/10.1155/2011/313102

Chen F, Huang M, Zhou B, Liu J, Li Y. Palladium nanoparticles immobilized on poly(vinyl chloride)-supported bidentate ligands: an easily prepared, air and moisture state catalyst for Suzuki-Miyaura reaction. http://www.paper.edu.cn/html/releasepaper/2013/04/450/

Hemantha HP, Sureshbabu VV. Poly(vinyl chloride)-supported palladium nanoparticles: catalyst for rapid hydrogenation reactions. Org Biomol Chem 2011; 9: 2597-601. http://dx.doi.org/10.1039/c0ob00962h DOI: https://doi.org/10.1039/c0ob00962h

Krishnan GR, Kajal KS, Sreekumar K. Synthesis of β-amino alcohols catalyzed by poly(vinyl chloride)-supported Schiff base metal complexes. Monatsh Chem 2012; 143: 637-42. http://dx.doi.org/10.1007/s00706-011-0628-x DOI: https://doi.org/10.1007/s00706-011-0628-x

Li J, Yang G, Cui Y. Recyclable polyvinyl chloride-supported pyrrolidine-thiourea as a bifunctional organocatalyst for direct asymmetric aldol reaction in aqueous medium. J Appl Polym Sci 2011; 121: 1506-11. http://dx.doi.org/10.1002/app.33676 DOI: https://doi.org/10.1002/app.33676

Krishnan GR, Niveditha KS, Sreekumar K. Aminated poly(vinyl chloride): an efficient green catalyst for Knoevenagel condensation. Indian J Chem 2013; 52B: 428-31. DOI: https://doi.org/10.1002/chin.201328080

Öztürk T, Göktaş M, Savaş B, Işıklar M, Atalar MN, Hazer B. Synthesis and characterization of poly(vinyl chloride-graft-2-vinylpyridine) graft copolymers using a novel macroinitiator by reversible addition-fragmentation chain transfer polymerization. e-Polymers 2014; 14: 27-34. http://dx.doi.org/10.1515/epoly-2013-0011 DOI: https://doi.org/10.1515/epoly-2013-0011

Liu H, Zhang XM. Review on chlorinated polyvinyl chloride. Polyvinyl Chloride 2008; 36: 9-11.

Lu W, Cao T, Wang Q, Cheng Y. Plasma-assisted synthesis of chlorinated polyvinyl chloride (CPVC) using a gas-solid contacting process. Plasma Process Polym 2011; 8: 94-9. http://dx.doi.org/10.1002/ppap.201000097 DOI: https://doi.org/10.1002/ppap.201000097

Lu W, Cao T, Jin Y, Cheng Y. Process decoupling of plasma enhanced synthesis of chlorinated polyvinyl chloride (CPVC) particles in a circulating fluidized bed. In: 10th international conference on circulating fluidized beds and fluidization technology -CFB-10, Knowlton T, PSRI Editors, ECI Symposium Series, Volume RP7 (2013).

Rzayev ZMO. Graft copolymers of maleic anhydride and its isostructural analogues: high performance engineering materials. Intern Rev Chem Eng 2011; 3: 153-215.

Xu C, Wang S, Shao L, Zhao J, Feng Y. Structure and properties of chlorinated polyvinyl chloride graft copolymer with higher property. Polym Adv Technol 2012; 23: 470-7. http://dx.doi.org/10.1002/pat.1901 DOI: https://doi.org/10.1002/pat.1901

Meng L, Xu C, Jing Z, Zhao J, Feng Y, Hu H. Preparation of anhydridized chlorinated polyvinyl chloride with enhanced properties and investigation of the factors affecting the chain structure of the graft copolymer. J Elast Plast 2015; 47: 136-52. http://dx.doi.org/10.1177/0095244313507801 DOI: https://doi.org/10.1177/0095244313507801

Hammiche D, Boukerrou A, Djidjelli H, Beztout M, Krim S. Synthesis of a new compatibilisant agent PVC-g-MA and its use in the PVC/alfa composites. J Appl Polym Sci 2012; 124: 4352-61. http://dx.doi.org/10.1002/app.35422 DOI: https://doi.org/10.1002/app.35422

Hammiche D, Boukerrou A, Djidjelli H, Djerrada A. Effects of some PVC-grafted maleic anhydrides (PVC-g-MAs) on the morphology, the mechanical and thermal properties of (alfa fiber)-reinforced PVC composites. J Vinyl Addit Technol 2013; 19: 225-32. http://dx.doi.org/10.1002/vnl.21317 DOI: https://doi.org/10.1002/vnl.21317

Pant D, Kumar S. Green chemical modification: an ecofriendly way to material management. Ind J Sci Res Tech 2014; 2: 58-61.

Lamanna M, D'Accorso N. New copolymers with heterocyclic pendant groups obtained from PVC using microwave-assisted process. J Appl Polym Sci 2011; 121: 951-6. http://dx.doi.org/10.1002/app.33652 DOI: https://doi.org/10.1002/app.33652

Naif OA, AL-Bayati RI. Synthesis of some modified poly(vinyl chloride) containing cinnoline-deravitives. National J Chem 2010; 37: 74-85.

Das R, Ali MdE, Abd Hamid SB, Ramakrishna S, Chowdhury ZZ. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 2014; 336: 97-109. http://dx.doi.org/10.1016/j.desal.2013.12.026 DOI: https://doi.org/10.1016/j.desal.2013.12.026

Prato M. [60]Fullerene chemistry for materials science applications. J Mater Chem 1997; 7: 1097-109. http://dx.doi.org/10.1039/a700080d DOI: https://doi.org/10.1039/a700080d

Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small 2005; 1: 180-92. http://dx.doi.org/10.1002/smll.200400118 DOI: https://doi.org/10.1002/smll.200400118

Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Progr Polym Sci 2010; 35: 1350-75. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005 DOI: https://doi.org/10.1016/j.progpolymsci.2010.07.005

Salavagione HJ, Martínez G, Ellis G. Recent Advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 2011; 32: 1771-89. http://dx.doi.org/10.1002/marc.201100527 DOI: https://doi.org/10.1002/marc.201100527

Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Progr Mater Sci 2012; 57: 1061-105. http://dx.doi.org/10.1016/j.pmatsci.2012.03.002 DOI: https://doi.org/10.1016/j.pmatsci.2012.03.002

Layek RK, Nandi AK. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013; 54: 5087-103. http://dx.doi.org/10.1016/j.polymer.2013.06.027 DOI: https://doi.org/10.1016/j.polymer.2013.06.027

Seeponkai N, Wootthikanokkhan J, Thanachayanont C. Synthesis and characterization of fullerene functionalized poly(vinyl chloride) (PVC) and dehydrochlorinated PVC using atom transfer radical addition and AIBN based fullerenation. J Appl Polym Sci 2013; 130: 2410-21. http://dx.doi.org/10.1002/app.39443 DOI: https://doi.org/10.1002/app.39443

Wootthikanokkhan J, Khunsriya P, Seeponkai N, Asawapirom U, Keawprajak A. Thermal behavior and photovoltaic performance of fullerene grafted dehydrochlorinated poly(vinyl chloride) in bulk heterojunction solar cells. Intern J Polym Mater 2015; 64: 392-9. http://dx.doi.org/10.1080/00914037.2014.958826 DOI: https://doi.org/10.1080/00914037.2014.958826

Wu XL, Liu P. Poly(vinyl chloride)-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation. eXPRESS Polym Lett 2010; 4: 723-8. http://dx.doi.org/10.3144/expresspolymlett.2010.87 DOI: https://doi.org/10.3144/expresspolymlett.2010.87

Salavagione HJ, Martínez G, Ballesteros C. Functionalization of multi-walled carbon nanotubes by stereoselective nucleophilic substitution on PVC. Macromolecules 2010; 43: 9754-60. http://dx.doi.org/10.1021/ma101780h DOI: https://doi.org/10.1021/ma101780h

Salavagione HJ, Martínez G. Importance of covalent linkages in the preparation of effective reduced graphene oxide-poly(vinyl chloride) nanocomposites. Macromolecules 2011; 44: 2685-92. http://dx.doi.org/10.1021/ma102932c DOI: https://doi.org/10.1021/ma102932c

Yao K, Zhang G, Lin Y, Gong J, Na H, Tang T. One-pot approach to prepare high-performance graphene-reinforced poly(vinyl chloride) using lithium alkyl as covalent bonding agent. Polym Chem 2015; 6: 389-96. http://dx.doi.org/10.1039/C4PY01110D DOI: https://doi.org/10.1039/C4PY01110D

Najafi SK. Use of recycled plastics in wood plastic composites-a review. Waste Manag 2013; 33: 1898-905. http://dx.doi.org/10.1016/j.wasman.2013.05.017 DOI: https://doi.org/10.1016/j.wasman.2013.05.017

Batayneh M, Marie I, Asi I. Use of selected waste materials in concrete mixes. Waste Manag 2007; 27: 1870-6. http://dx.doi.org/10.1016/j.wasman.2006.07.026 DOI: https://doi.org/10.1016/j.wasman.2006.07.026

Sajdak M, Muzyka R, Hrabak J, Słowik K. Use of plastic waste as a fuel in the co-pyrolysis of biomass: part III: optimisation of the co-pyrolysis process. J Anal Appl Pyrol 2015; 112: 298-305. http://dx.doi.org/10.1016/j.jaap.2015.01.008 DOI: https://doi.org/10.1016/j.jaap.2015.01.008

Pant D, Singh R, Kumar S. Management of waste polyvinyl chloride (PVC) through chemical modification. J Sci Indus Res 2012; 71: 181-6.

Yoshihara M, Grause G, Kameda T, Yoshioka T. Upgrading of poly(vinyl chloride) by chemical modifications using sodium sulfide. J Mater Cycles Waste Manag 2010; 12: 264-70. http://dx.doi.org/10.1007/s10163-010-0275-z DOI: https://doi.org/10.1007/s10163-010-0275-z

Kameda T, Fukuda Y, Grause G, Yoshioka T. Chemical modification of flexible and rigid poly(vinyl chloride) by nucleophilic substitution with thiocyanate using a phase-transfer catalyst. Mater Chem Phys 2010; 124: 163-7. http://dx.doi.org/10.1016/j.matchemphys.2010.06.011

Kameda T, Fukuda Y, Grause G, Yoshioka T. Chemical modification of rigid poly(vinyl chloride) by the substitution with nucleophiles. J Appl Polym Sci 2010; 116: 36-44. http://dx.doi.org/10.1002/app.31452 DOI: https://doi.org/10.1002/app.31452

Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T. Chemical modification and dechlorination of polyvinyl chloride by substitution with thiocyanate as a nucleophile. Polym Eng Sci 2010; 50: 69-75. http://dx.doi.org/10.1002/pen.21512 DOI: https://doi.org/10.1002/pen.21512

Kameda T, Grause G, Yoshioka T. Chemical modification of flexible poly(vinyl chloride) by nucleophilic substitution. SPE Plast Res Online 2010; p.3. DOI: https://doi.org/10.1016/j.matchemphys.2010.06.011

Kameda T, Fukuda Y, Grause G, Yoshioka T. Effect of the nucleophilicity and solvent on the chemical modification of flexible poly(vinyl chloride) by substitution. Polym Eng Sci 2011; 51: 1108-15. http://dx.doi.org/10.1002/pen.21693 DOI: https://doi.org/10.1002/pen.21693

Grause G, Hosoya T, Hashimoto K, Kameda T, Yoshioka T. Nucleophilic substitution of poly(vinyl chloride) with iminoacetic acid and n-dodecanethiol. J Mater Cycles Waste Manag 2014; 16: 519-24. http://dx.doi.org/10.1007/s10163-013-0202-1 DOI: https://doi.org/10.1007/s10163-013-0202-1

Kameda T, Yoshihara M, Grause G, Yoshioka T. Chemical modification of poly(vinyl chloride) using sodium trisulfide. J Polym Res 2015; 22:88, p.5. http://dx.doi.org/10.1007/s10965-015-0718-2 DOI: https://doi.org/10.1007/s10965-015-0718-2

Roh DK, Park JT, Ahn SH, Ahn H, Ryu DY, Kim JH. Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: interactions, nanostructures and applications to dye-sensitized solar cells. Electrochim Acta 2010; 55: 4976-81. http://dx.doi.org/10.1016/j.electacta.2010.03.106 DOI: https://doi.org/10.1016/j.electacta.2010.03.106

Ahn SH, Koh JH, Seo JA, Kim JH. Structure control of organized mesoporous TiO2 films templated by graft copolymers for dye-sensitized solar cells. Chem Commun 2010; 46: 1935-7. http://dx.doi.org/10.1039/b919215h DOI: https://doi.org/10.1039/B919215H

Ahn SH, Jeon H, Son KJ, Ahn H, Koh W-G, Ryu DY, Kim JH. Efficiency improvement of dye-sensitized solar cells using graft copolymer-templated mesoporous TiO2 films as an interfacial layer. J Mater Chem 2011; 21: 1772-9. http://dx.doi.org/10.1039/C0JM02706E DOI: https://doi.org/10.1039/C0JM02706E

Park JT, Roh DK, Patel R, Kim E, Ryu DY, Kim JH. Preparation of TiO2 spheres with hierarchical pores via

grafting polymerization and sol-gel process for dye-sensitized solar cells. J Mater Chem 2010; 20: 8521-30. http://dx.doi.org/10.1039/c0jm01471k DOI: https://doi.org/10.1039/c0jm01471k

Park JT, Chi WS, Kim SJ, Lee D, Kim JH. Mesoporous TiO2 Bragg stack templated by graft copolymer for dye-sensitized solar cell. Scientific Reports 2014; 4: 5505. http://dx.doi.org/10.1038/srep05505 DOI: https://doi.org/10.1038/srep05505

Patel R, Ahn SH, Seo JA, Kim SJ, Kim JH. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO2 thin films for dye-sensitized solar cells. J Nanopart Res 2012; 14: 845, p12. http://dx.doi.org/10.1007/978-3-319-05041-6_17 DOI: https://doi.org/10.1007/s11051-012-0845-1

Yeon SH, Patel R, Koh JK, Ahn SH, Kim JH. Preparation of porous TiO2 thin films by poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and their applications to dye-sensitized solar cells. J Kor Electrochem Soc 2011; 14: 83-91. http://dx.doi.org/10.5229/JKES.2011.14.2.083 DOI: https://doi.org/10.5229/JKES.2011.14.2.083

Zheng X-m, Du L-y, Ma Y-h, Liu L-y, Yang W-t. Photo-induced synthesis of PVC macroinitiators and preparation of amphiphilic graft copolymers. Acta Polym Sin 2014; 2: 248-54. DOI: https://doi.org/10.3724/SP.J.1105.2014.13217

Ameer AA, Abdallh MS, Ahmed AA, Yousif EA. Synthesis and characterization of polyvinyl chloride chemically modified by amines. Open J Polym Chem 2013; 3: 11-15. http://dx.doi.org/10.4236/ojpchem.2013.31003 DOI: https://doi.org/10.4236/ojpchem.2013.31003

Witwit NA. Study of the optical properties of poly(vinyl chloride)-4-[(5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl]phenol complexes. Eur J Chem 2014; 5: 652-6. http://dx.doi.org/10.5155/eurjchem.5.4.652-656.1100 DOI: https://doi.org/10.5155/eurjchem.5.4.652-656.1100

Abdallh MS. Synthesis and optical properties study of some metal complexes of poly(vinyl chloride)-pyridine-4-carbohydrazide. J Al-Nahrain Univ 2013; 16: 24-9. DOI: https://doi.org/10.22401/JNUS.16.2.04

Yousif E, Abdallh M, Hashim H, Salih N, Salimon J, Abdullah BM, Win Y-F. Optical properties of pure and modified poly(vinyl chloride). Intern J Indus Chem 2013; 4: p.8. http://dx.doi.org/10.1186/2228-5547-4-4 DOI: https://doi.org/10.1186/2228-5547-4-4

Mu B, Lu C, Dong Y, Liu P. Preparation and characterization of PVC-based photoresponsive polymers containing azo-chromophores. J Macromol Sci Part A Pure Appl Chem 2010; 47: 833-38. http://dx.doi.org/10.1080/10601325.2010.492262 DOI: https://doi.org/10.1080/10601325.2010.492262

Yousif E, Hameed A, Rasheed R, Mansoor H, Farina Y, Graisa A, Salih N, Salimon J. Synthesis and photostability study of some modified poly(vinyl chloride) containing pendant benzothiazole and benzimidozole ring. Intern J Chem 2010; 2: 65-80. http://dx.doi.org/10.5539/ijc.v2n1p65 DOI: https://doi.org/10.5539/ijc.v2n1p65

Naif OA, Salih HK. Synthesis of new modified PVC and their photostability study. Tikrit J Pure Sci 2011; 16: 101-17.

Yavuz E, Gursel Y, Senkal BF. Modification of poly(glycidyl methacrylate) grafted onto crosslinked PVC with iminopropylene glycol group and use for removing boron from water. Desalination 2013; 310: 145-50. http://dx.doi.org/10.1016/j.desal.2012.07.015 DOI: https://doi.org/10.1016/j.desal.2012.07.015

Ammari F, Meganem F. Poly(vinyl chloride) functionalization by aliphatic and aromatic amines: application to the extraction of some metal cations. Turk J Chem 2014; 38: 638- 49. http://dx.doi.org/10.3906/kim-1306-24 DOI: https://doi.org/10.3906/kim-1306-24

Al-Jibouri MNA, Musa TM, Mubarak M, Al-Jibouri WM. Synthesis, characterization and adsorption study of new resin PVC-8-hydroxyquinoline-5-sulfonic acid with toxic metals. Sci J Chem 2013; 1: 38-49. http://dx.doi.org/10.11648/j.sjc.20130104.11 DOI: https://doi.org/10.11648/j.sjc.20130104.11

Sun L, Liu C-p, Qi M-y, Liu J-s, Liu X-g, Cui Z-z. Adsorption properties of polyamine-diacetone acrylamide modified PVC resin to 4-chlorophenol. Chinese J Proc Eng, 2012; 12: 775-9.

Wang M-Q, Yan J, Du S-G, Zeng J-W, Chang W-P, Guo Y, and Li H-G. Adsorption characteristic of copper ions and its application in electroless nickel plating on a hydrogel-functionalized poly(vinyl chloride) plastic. J Mater Sci 2013; 48: 7224-37. http://dx.doi.org/10.1007/s10853-013-7539-7 DOI: https://doi.org/10.1007/s10853-013-7539-7

Wang M-Q, Yan J, Du S-G, Meng S-H. Copper nanoparticles seeded functionalized-PVC plastic surface for electroless nickel deposition. Surf Interf Anal 2013; 45: 1899-902. http://dx.doi.org/10.1002/sia.5337 DOI: https://doi.org/10.1002/sia.5337

Singh A, Rawat MSM, Pande CS. Chemical modification and characterization of poly(vinyl chloride) by crosslinking of multifunctional amines. J Appl Polym Sci 2010. http://dx.doi.org/10.1002/app.32432 DOI: https://doi.org/10.1002/app.32432

Shaglaeva NS, Bayandin VV, Sultangareev RG, Vakul’skaya TI, Khutsishvili SS, Orkhokova EA, Prozorova GF. Copolymers of vinyl chloride obtained by polymer-analogous reactions of polyvinyl chloride with sodium salts of heteroaromatic H–N acids. Russian J Appl Chem 2013; 86: 1576-80. http://dx.doi.org/10.1134/S1070427213100169 DOI: https://doi.org/10.1134/S1070427213100169

Coṣkun M, Seven P. Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization. React Funct Polym 2011; 71: 395-401. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.12.012 DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.12.012

Lăzăroaie C, Rusen E, Mărculescu B, Zecheru T, Hubcă G. Chemical modification of PVC for polymer matrices with special properties. UPB Sci Bull Series B 2010; 72: 127-40.

Li K-s, Huang H, Niu H-m, Study on reactive compatibilization of PVC/PS catalyzed by anhydrous aluminum chloride. Acta Polym Sin 2013; 1: 142-8. DOI: https://doi.org/10.3724/SP.J.1105.2013.12181

Downloads

Published

2015-07-28

How to Cite

Moulay, S. (2015). Covalent Functionalizations of Poly(vinyl chloride) in Tune with Applications: An Update. Journal of Research Updates in Polymer Science, 4(2), 79–122. https://doi.org/10.6000/1929-5995.2015.04.02.3

Issue

Section

Articles