Formation Features of Hybrid Magnetic Materials Based on Polyphenoxazine and Magnetite Nanoparticles

Authors

  • S.Zh. Ozkan A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow 119991, Russia
  • G.P. Karpacheva A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow 119991, Russia
  • E.L. Dzidziguri National University of Science and Technology MISIS, 4 Leninsky prospect, Moscow 119049, Russia
  • P.A. Chernavskii Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
  • G.N. Bondarenko A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow 119991, Russia
  • G.V. Pankina Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia

DOI:

https://doi.org/10.6000/1929-5995.2016.05.04.2

Keywords:

Polyphenoxazine, Conjugated polymers, Oxidative polymerization in situ, IR heating, Metal-polymer nanocomposite, Magnetic material, Fe3O4 nanoparticles.

Abstract

Hybrid metal-polymer nanocomposite materials based on polyphenoxazine (PPhOA) and Fe3O4 nanoparticles were obtained for the first time via two methods: in situ oxidative polymerization of phenoxazine (PhOA) in an aqueous solution of isopropyl alcohol with nanoparticles of Fe3O4 being present; chemical transformations of PPhOA subjected to IR heating at 400–450 °С in the presence of FeCl3·6H2O in an inert atmosphere. Obtained hybrid Fe3O4/PPhOA nanomaterials were characterized by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectrometry (ААS), elemental analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), as well as by vibrating sample magnetometry. The chemical structure, phase composition, magnetic and thermal properties of obtained nanocomposites were investigated in relation to the synthesis conditions.

References

Sellinger A, Weiss PM, Nguyen A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 1998; 394: 256-60. https://doi.org/10.1038/28354 DOI: https://doi.org/10.1038/28354

Yamamoto K, Sakata Y, Nohara Y, Takahashi Y, Tatsumi T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 2003; 300: 470-2. https://doi.org/10.1126/science.1081019 DOI: https://doi.org/10.1126/science.1081019

Gerasin VA, Antipov EM, Karbushev VV, et al. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russ Chem Rev 2013; 82: 303-32. https://doi.org/10.1070/RC2013v082n04ABEH004322 DOI: https://doi.org/10.1070/RC2013v082n04ABEH004322

Pomogailo AD, Rozenberg AT, Uflyand IE. Metal nanoparticles in polymers Khimiya, Moscow, 2000; p. 672. [in Russian].

Yang С, Du J, Peng Q, et al. Polyaniline/Fe3O4 nanoparticle composite: synthesis and reaction mechanism. J Phys Chem B 2009; 113: 5052-8. https://doi.org/10.1021/jp811125k DOI: https://doi.org/10.1021/jp811125k

Qiu G, Wang Q, Nie M. Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. J Appl Polym Sci 2006; 102: 2107-11. https://doi.org/10.1002/app.24100 DOI: https://doi.org/10.1002/app.24100

Khan A, Aldwayan AS, Alhoshan M, Alsalhi M. Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite. Polym Int 2010; 59: 1690-4. https://doi.org/10.1002/pi.2908 DOI: https://doi.org/10.1002/pi.2908

Umare SS, Shambharkar BH. Synthesis, characterization, and corrosion inhibition study of polyaniline-α-Fe2O3 nanocomposite. J Appl Polym Sci 2013; 127: 3349-55. https://doi.org/10.1002/app.37799 DOI: https://doi.org/10.1002/app.37799

Mallikarjuna NN, Manohar SK, Kulkarni PV, Venkataraman A, Aminabhavi TM. Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. J Appl Polym Sci 2005; 97: 1868-74. https://doi.org/10.1002/app.21405 DOI: https://doi.org/10.1002/app.21405

Bhaumik M, Leswifi TY, Maity A, Shrinivasu VV, Onyango MS. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite. J Hasardous Mater 2011; 186: 150-9. https://doi.org/10.1016/j.jhazmat.2010.10.098 DOI: https://doi.org/10.1016/j.jhazmat.2010.10.098

Jokar M, Foroutani R, Safaralizadeh MH, Farhadi K. Synthesis and characterization of polyaniline/Fe3O4 magnetic nanocomposite as practical approach for fluoride removal process. Ann Res Rev Biol 2014; 4: 3262-73. https://doi.org/10.9734/ARRB/2014/9108 DOI: https://doi.org/10.9734/ARRB/2014/9108

Shambharkar BH, Umare SS. Production and characteri-zation of polyaniline/Co3O4 nanocomposite as a cathode of Zn–polyaniline battery. Mater Sci Eng B 2010; 175: 120-8. https://doi.org/10.1016/j.mseb.2010.07.014 DOI: https://doi.org/10.1016/j.mseb.2010.07.014

Chen A, Wang H, Zhao B, Wang J, Li X. Preparation and characterization of Fe3O4/polypyrrole(PPy) composites. Acta Mater Compos Sin 2004; 21: 157-60.

Aphesteguy JC, Jacobo SE. Composite of polyaniline containing iron oxides. Physica B 2004; 354: 224-7. https://doi.org/10.1016/j.physb.2004.09.053 DOI: https://doi.org/10.1016/j.physb.2004.09.053

Wan M, Li J. Synthesis and electrical–magnetic properties of polyaniline composites. J Polym Sci A Polym Chem 1998; 36: 2799-805. https://doi.org/10.1002/(SICI)1099-0518(19981115)36:15<2799::AID-POLA17>3.0.CO;2-1 DOI: https://doi.org/10.1002/(SICI)1099-0518(19981115)36:15<2799::AID-POLA17>3.0.CO;2-1

Zhang Z, Wan M. Nanostructures of polyaniline composites containing nano-magnet. Synth Met 2003; 132: 205-12. https://doi.org/10.1016/S0379-6779(02)00447-2 DOI: https://doi.org/10.1016/S0379-6779(02)00447-2

Karpacheva GP, Ozkan SZh. RU Patent for the invention of "Dispersed nanocomposite magnetic material and method of its obtaining" 2011; № 2426188.

Eremeev IS, Ozkan SZh, Karpacheva GP, Bondarenko GN. Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carbonic acid and Fe3O4. Nanotechnologies in Russia 2014; 9: 38-44. https://doi.org/10.1134/S1995078014010054 DOI: https://doi.org/10.1134/S1995078014010054

Karpacheva GP, Ozkan SZh, Eremeev IS, Bondarenko GN, Dzidziguri EL, Chernavskii PA. Synthesis of hybrid magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4 in the interfacial process. Eur Chem Bull 2014; 3: 1001-7.

Karpacheva G, Ozkan S. Polymer-metal hybrid structures based on polydiphenylamine and Co nanoparticles. Procedia Mater Sci 2013; 2: 52-9. https://doi.org/10.1016/j.mspro.2013.02.007 DOI: https://doi.org/10.1016/j.mspro.2013.02.007

Ozkan SZh, Dzidziguri EL, Chernavskii PA, Karpacheva GP, Efimov MN, Bondarenko GN. Metal-polymer nanocomposites based on polydiphenylamine and cobalt nanoparticles. Nanotechnologies in Russia 2013; 8: 452-60. https://doi.org/10.1134/S1995078013040113 DOI: https://doi.org/10.1134/S1995078013040113

Ozkan SZh, Dzidziguri EL, Karpacheva GP, Chernavskii PA, Efimov MN, Bondarenko GN. A magnetic metal-polymer nanocomposite material based on polydiphenylamine and Fe3O4 nanoparticles. Russ Chem Bull 2015; 64: 196-201. https://doi.org/10.1007/s11172-015-0842-5 DOI: https://doi.org/10.1007/s11172-015-0842-5

Karpacheva GP, Ozkan SZh, Dzidziguri EL, et al. Hybrid metal-polymer nanocomposites based on polyphenoxazine and cobalt nanoparticles. Eur Chem Bull 2015; 4: 135-41.

Karpacheva GP, Ozkan SZh. RU patent for the invention of "Polymer dispersed magnetic material and method for production thereof", № 2601005 from 27.10.2016

Ozkan SZh, Karpacheva GP, Dzidziguri EL, et al. One step synthesis of hybrid magnetic material based on polypheno-xazine and bimetallic Co-Fe nanoparticles. Polym Bull 2016. https://doi.org/10.1007/s00289-016-1878-x DOI: https://doi.org/10.1007/s00289-016-1878-x

Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GYu. Magnetic nanoparticles: preparation, structure and properties. Rus Chem Rev 2005; 74: 489-520. https://doi.org/10.1070/RC2005v074n06ABEH000897 DOI: https://doi.org/10.1070/RC2005v074n06ABEH000897

Chernavskii PA, Pankina GV, Lunin VV. Magnetometric methods of investigation of supported catalysts. Russ Chem Rev 2011; 80: 579-604. https://doi.org/10.1070/RC2011v080n06ABEH004187 DOI: https://doi.org/10.1070/RC2011v080n06ABEH004187

Ozkan SZh, Karpacheva GP, Bondarenko GN. Polymers of phenoxazine: synthesis, structure. Russ Chem Bull 2011; 60: 1651-6. https://doi.org/10.1007/s11172-011-0247-z DOI: https://doi.org/10.1007/s11172-011-0247-z

Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 1981; 17: 1247-8. https://doi.org/10.1109/TMAG.1981.1061188 DOI: https://doi.org/10.1109/TMAG.1981.1061188

Zemtsov LM, Karpacheva GP, Efimov MN, Muratov DG, Bagdasarova KA. Carbon nanostructures based on IR-pyrolyzed polyacrylonitrile. Polym Sci A 2006; 48: 633-7. https://doi.org/10.1134/S0965545X06060125 DOI: https://doi.org/10.1134/S0965545X06060125

Dzidziguri EL. Dimensional characteristics of nanopowders. Nanotechnologies in Russia 2009; 4: 857-70. https://doi.org/10.1134/S1995078009110147 DOI: https://doi.org/10.1134/S1995078009110147

Gubin SP. What is nanoparticle? Development trends for nanochemistry and nanotechnology. Ross Khim Zh 2000; 44: 23-31.

Downloads

Published

2016-01-23

How to Cite

Ozkan, S., Karpacheva, G., Dzidziguri, E., Chernavskii, P., Bondarenko, G., & Pankina, G. (2016). Formation Features of Hybrid Magnetic Materials Based on Polyphenoxazine and Magnetite Nanoparticles. Journal of Research Updates in Polymer Science, 5(4), 137–148. https://doi.org/10.6000/1929-5995.2016.05.04.2

Issue

Section

Articles