Consecutive Removal of Hazardous Dyes from Aqueous Solutions by Composite hydrogels Based on Rice Straw

Authors

  • Samia E. Abdel-Aal National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
  • Ghada A. Mahmoud National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
  • A.A. Elbayaa Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
  • Nagwa A. Badway Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
  • Doaa F. Ahmed Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

DOI:

https://doi.org/10.6000/1929-5995.2017.06.03.4

Keywords:

Agricultural waste, Kinetics, isotherm, Radiation, secondary adsorption

Abstract

The composite hydrogels based on rice straw (RS) and N-vinyl-2-pyrrolidone (NVP) or acrylamide (AAm) were successfully prepared by gamma irradiation. The effect of the radiation dose and the monomer content on the gel percent was studied. The composite hydrogels were confirmed by (FTIR), (TGA) and (SEM). It was found that the diffusion of water into the prepared composites was Fickian character. The removal of congo red (CR) and methyl orange (MO) dyes by (NVP/RS) and (AAm/RS) composite hydrogels were investigated as a function of the pH, contact time, initial dye concentration solution and temperature. It was achieved that the adsorption capacity of (NVP/RS) composite hydrogel towards (CR) and (MO) was higher than (AAm/RS) one. The kinetic data was tested by the pseudo-first-order and the pseudo-second-order kinetic models. The adsorption isotherm was closely fitted with the Freundlich model for adsorption of CR and MO onto (NVP/RS) and the Langmuir model for adsorption of the dyes onto (AAm/RS). A high adsorption capacity was obtained in the second adsorption cycle of MO onto the composite hydrogels loaded with CR. Improvement in the adsorption of MO onto (NVP/RS) and (AAm/ RS) composite hydrogels loaded with Co(II).

References

El-Hag Ali A, Raafat AI,Mahmoud GA, Badway NA, El-Mottaleb MA, Elshahawy. J Inorg Organomet Polym 2016; 26 (3): 606-615. DOI: https://doi.org/10.1007/s10904-016-0346-2

Tan IAW, Hameed BH, Ahmad AL. Chem Eng J 2007; 127: 111-119. https://doi.org/10.1016/j.cej.2006.09.010 DOI: https://doi.org/10.1016/j.cej.2006.09.010

Yao Z, Wang L, Qi J. Clean (Weinh) 2009; 37 (8): 642-648. DOI: https://doi.org/10.1002/clen.200900093

Zhu HY, Fua YQ, Jiang R, Jiang J-H, Xia Z G-M, Zhao S-L, Wang Y. Chem Eng J 2011; 173: 494-502. https://doi.org/10.1016/j.cej.2011.08.020 DOI: https://doi.org/10.1016/j.cej.2011.08.020

Mahmoud GA, Samia EA, Badway NA, Abo Farha SA, Alshafei EA. Starch/Stärke 2013; 65: 1-10. https://doi.org/10.1002/star.201200143 DOI: https://doi.org/10.1002/star.201200143

Dalaran M, Emik S, Güçlü G, Iyim TB, Özgümüş S. Desalination 2011; 279: 170-182. https://doi.org/10.1016/j.desal.2011.06.004 DOI: https://doi.org/10.1016/j.desal.2011.06.004

Vishakha k, Kishor B, Sudha R. Int J Res Pharm Biomed Sci 2012; 3: 1597-1613.

Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, C. Mangwandi, Chem Eng J 2017; 307: 264-272. https://doi.org/10.1016/j.cej.2016.08.089 DOI: https://doi.org/10.1016/j.cej.2016.08.089

Liang S, Guo XY, Feng NC, Tian QH. J Hazard Mater 2009; 174(1-3): 756-762. https://doi.org/10.1016/j.jhazmat.2009.09.116 DOI: https://doi.org/10.1016/j.jhazmat.2009.09.116

Zhang WX, Li HJ, Yan H, Jiang ZW, Kan XW, Dong L, Yang H, Li AM, Cheng R. Bioresource Tech 2012; 117: 40-47. https://doi.org/10.1016/j.biortech.2012.04.064 DOI: https://doi.org/10.1016/j.biortech.2012.04.064

Singh B, Kumar S. ‎Nucl. Instr. Meth. Phys. Res 2008; 266: 3417-3430. https://doi.org/10.1016/j.nimb.2008.04.022 DOI: https://doi.org/10.1016/j.nimb.2008.04.022

Mahmoud GA, Abdel-Aal SE, Badway NA, Elbayaa AA, Ahmed DF. ‎Polym Bull (2016); DOI 10.1007/s00289-016-1717-0.

Karadag E, Saraydin D, Sahiner N, Guven O. J Macromol. Sci.-Pure Appl Chem A 2001; 38 (11):1105-1114. DOI: https://doi.org/10.1081/MA-100107132

Qudah YH, Raafat AI, El-Hag AA. Arab J Nucl Sci Appl 2013; 46: 80-91.

Chakraborty S, Chowdhury S, Saha PD. Carbohydr Polym 2011; 86: 1533-1541. https://doi.org/10.1016/j.carbpol.2011.06.058 DOI: https://doi.org/10.1016/j.carbpol.2011.06.058

Zhang Y, Chi H, Zhang W, Sun Y, Liang Q, Gu Y, Jing R. Nano-Micro Lett 2014; 6(1): 80-87. https://doi.org/10.1007/BF03353772 DOI: https://doi.org/10.1007/BF03353772

Kang W, Wang A. J Polym Res 2013; 20: 110-117. https://doi.org/10.1007/s10965-012-0070-8 DOI: https://doi.org/10.1007/s10965-013-0101-0

Panda GC, Das SK, Guha AK. J Hazard Mater 2009; 164: 374-379. https://doi.org/10.1016/j.jhazmat.2008.08.015 DOI: https://doi.org/10.1016/j.jhazmat.2008.08.015

Mohammadi N, Khani H, Amereh E, Agarwal S. J Colloid Interf Sci 2011; 362: 457-462. https://doi.org/10.1016/j.jcis.2011.06.067 DOI: https://doi.org/10.1016/j.jcis.2011.06.067

Deshmukh SR, Singh RP. J Appl Poly Sci 1987; 33: 1963-1975. https://doi.org/10.1002/app.1987.070330610 DOI: https://doi.org/10.1002/app.1987.070330610

Bratby J. Coagulation and Flocculation Uplands Press Ltd; 1980.

Cheah W, Hosseini S, Khan MA, Chuah TG, Choong, TSY. Chem Eng J 2013; 215-216: 747-754. https://doi.org/10.1016/j.cej.2012.07.004 DOI: https://doi.org/10.1016/j.cej.2012.07.004

Lagergren, S. Kungliga Svenska Vetenskapsakademiens Handlingar 1898; 24: 1-39

Ho S, Water Res 2006; 40: 119-125. https://doi.org/10.1016/j.watres.2005.10.040

Mahmoud GA, Mohamed SF. Aust J Basic Appl Sci 2012; 6(6): 262-272.

Eren Z, Acar FN. Desalination 2006; 194: 1-10. https://doi.org/10.1016/j.desal.2005.10.022 DOI: https://doi.org/10.1016/j.desal.2005.10.022

Kannan N, Sundaram MM. J Dyes Pig 2001; 51:25-40. https://doi.org/10.1016/S0143-7208(01)00056-0 DOI: https://doi.org/10.1016/S0143-7208(01)00056-0

Bulut Y, Aydin H. Desalination 2006; 194: 259-267. https://doi.org/10.1016/j.desal.2005.10.032 DOI: https://doi.org/10.1016/j.desal.2005.10.032

Langmuir I. J Amer. Chem. Soc. 1916; 38: 2221-2295. https://doi.org/10.1021/ja02268a002 DOI: https://doi.org/10.1021/ja02268a002

Freundlich HMF. Phy Chem J1906; 57: 385-471. DOI: https://doi.org/10.1515/zpch-1907-5723

Rudzinski W, Plazinski W. Appl Surf Sci 2007; 253: 5827-5840. https://doi.org/10.1016/j.apsusc.2006.12.038 DOI: https://doi.org/10.1016/j.apsusc.2006.12.038

Senthilkumaar S, Kalaamani V, Subburaam PC. J Hazard Mater 2006; 136: 800-808. https://doi.org/10.1016/j.jhazmat.2006.01.045 DOI: https://doi.org/10.1016/j.jhazmat.2006.01.045

Boudiaf HZ, Boutahala M, Arab L. Chem Eng J 2012; 187: 142-149. https://doi.org/10.1016/j.cej.2012.01.112 DOI: https://doi.org/10.1016/j.cej.2012.01.112

Mane VS, Babu PV. J Taiwan Inst Chem Eng 2013; 44: 81-90. DOI: https://doi.org/10.1016/j.jtice.2012.09.013

Feng YQ, Ju B, Zhang S, Wang X, Yang I. Carbohydr Polym 2008; 72: 326-333. https://doi.org/10.1016/j.carbpol.2007.08.019 DOI: https://doi.org/10.1016/j.carbpol.2007.08.019

Ho, Y-S. Water Res 2006; 40: 119-125. https://doi.org/10.1016/j.watres.2005.10.040 DOI: https://doi.org/10.1016/j.watres.2005.10.040

Downloads

Published

2017-10-04

How to Cite

E. Abdel-Aal, S., A. Mahmoud, G., Elbayaa, A., A. Badway, N., & F. Ahmed, D. (2017). Consecutive Removal of Hazardous Dyes from Aqueous Solutions by Composite hydrogels Based on Rice Straw. Journal of Research Updates in Polymer Science, 6(3), 102–117. https://doi.org/10.6000/1929-5995.2017.06.03.4

Issue

Section

Articles