Obtention and Characterization of Polypropylene, Calcium Carbonate and Poly(ethylene-co-vinyl acetate) Composites

Authors

  • Josué Alberton Group of Studies on Polymeric Materials (Polimat), Federal University of Santa Catarina, Brazil
  • Silvia Maria Martelli Group of Studies on Polymeric Materials (Polimat), Federal University of Santa Catarina, Brazil
  • Valdir Soldi University Center Barriga Verde (UNIBAVE), Brazil

DOI:

https://doi.org/10.6000/1929-5995.2012.01.01.2

Keywords:

Composites, polypropylene, CaCO3-EVA, thermoplastics sheets

Abstract

In the increasingly competitive market, the survival of the industries that manufacture components or pieces of polymer is strictly linked to the reduction of production costs. An alternative could be the use of composites of polypropylene, calcium carbonate and poly(ethylene-co-vinyl acetate) for the production of thermoplastics sheets. The thermoplastics sheets obtained by extrusion and co-extrusion processes were characterized through the chemical, physical, thermal, mechanical and morphological characteristics of materials, enabling the performance analysis of the production processes and application to the design of components or parts. The results showed that the addition of 30 wt% CaCO3-EVA increased the thermal stability of polypropylene (PP) around 32°C, decreasing the processing temperature of composites in 15°C, also by decreasing the crystallinity of the polymer from 43% to 30% and the deflection temperature of plastics under flexural load in the edgewise position (DTUL) from 122°C to 107°C. Regarding to the mechanical tests, the yield stress of the composites obtained by extrusion and co-extrusion processes decreased with the addition of CaCO3-EVA. According with the obtained results, we suggest that PP/CaCO3-EVA composites could be used in the production of polymeric parts or components where tensile strengths higher than 25 MPa are not required and for service temperatures between 30°C and 70°C.

References

Iozzi MA, Martins GS, Martins MA, Ferreira FC, Job AE, Mattoso LHC. Estudo da influência de tratamentos químicos da fibra de sisal nas propriedades de compósitos com borracha nitrílica. Polímeros 2010; 20: 25. http://dx.doi.org/10.1590/S0104-14282010005000003 DOI: https://doi.org/10.1590/S0104-14282010005000003

Gao C, Yu L, Liu H, Chen L. Development of self-reinforced polymer composites. Progr Polym Sci 2011; 36: 1766.

Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta 2011; 523: 1. http://dx.doi.org/10.1016/j.tca.2011.06.010 DOI: https://doi.org/10.1016/j.tca.2011.06.010

Barboza ACRN, De Paoli MA. Polipropileno Carregado com Microesferas Ocas de Vidro (Glass Bubbles™): Obtenção de Espuma Sintética. Polímeros 2002; 12: 130. http://dx.doi.org/10.1590/S0104-14282002000200013 DOI: https://doi.org/10.1590/S0104-14282002000200013

Pizzitola ICdP, Machado MM, Wiebeck H. Propriedades mecânicas e comportamento a emissões de voláteis de compósitos de polipropileno/fibras curtas de sílica. Polímeros 2011; 21: 223. http://dx.doi.org/10.1590/S0104-14282011005000037 DOI: https://doi.org/10.1590/S0104-14282011005000037

Lopes PE, Sousa JAD. Influência das condições de processamento nas propriedades mecânicas de compósitos de polipropileno com fibras de vidro. Polímeros 1999; 9: 85. DOI: https://doi.org/10.1590/S0104-14281999000100011

Mano EB, Mendes LC. Introdução a polímeros. 2nd ed. Edgard Blucher: São Paulo 1999.

Rocha MCG, Silva AHMFT, Coutinho FMB, Silva ALN. Study of composites based on polypropylene and calcium carbonate by experimental design. Polym Test 2005; 24: 1049. http://dx.doi.org/10.1016/j.polymertesting.2005.05.008 DOI: https://doi.org/10.1016/j.polymertesting.2005.05.008

Gupta AK, Ratnam BK, Srinivasan KR. Impact toughening of polypropylene by ethylene vinyl acetate copolymer. J Appl Polym Sci 1992; 45: 1303. http://dx.doi.org/10.1002/app.1992.070450718 DOI: https://doi.org/10.1002/app.1992.070450718

Valera-Zaragoza M, Ramírez-Vargas E, Medellín-Rodríguez FJ, Huerta-Martínez BM. Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites. Polym Degrad Stabil 2006; 91: 1319. http://dx.doi.org/10.1016/j.polymdegradstab.2005.08.011 DOI: https://doi.org/10.1016/j.polymdegradstab.2005.08.011

Bartczak Z, Argon AS, Cohen RE, Weinberg M. Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 1999; 40: 2347. http://dx.doi.org/10.1016/S0032-3861(98)00444-3 DOI: https://doi.org/10.1016/S0032-3861(98)00444-3

Pukanszky B, Karger-Kocsis J. Polypropylene: structure, blends and composites. Chapman and Hall: London 1995. DOI: https://doi.org/10.1007/978-94-011-0521-7

Kowalewski T, Galeski A. Influence of chalk and its surface-treatment on crystallization of filled polypropylene. J Appl Polym Sci 1986, 32: 2919. http://dx.doi.org/10.1002/app.1986.070320107 DOI: https://doi.org/10.1002/app.1986.070320107

Kowaleski T, Galeski A, Kryszewsk M. Polymer blends, processing, morphology and properties. Plenum Press: New York 1984.

Varga J. Beta-modification of polypropylene and its

-component systems. J Therm Anal 1989; 35: 1891. http://dx.doi.org/10.1007/BF01911675 DOI: https://doi.org/10.1007/BF01911675

Zuiderduin WCJ, Westzaan C, Huétink J, Gaymans RJ. Toughening of polypropylene with calcium carbonate particles. Polymer 2003; 44: 261. http://dx.doi.org/10.1016/S0032-3861(02)00769-3 DOI: https://doi.org/10.1016/S0032-3861(02)00769-3

Hohenberger W. Cargas funcionais expandem possibilidades de aplicação técnica das resinas commodities. Plástico Industrial 2007; 105: 84.

Charrier JM. Polymeric materials and processing. Hansen Publishers: New York 1990.

Canevarolo Jr. SV. Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. Artliber Editora; São Paulo 2002.

Mascia L. Thermoplastics: material engineering”. 2rd ed. Elsevier: London 1989.

Progelhof RC, Throne JL. Polymer engineering principles: properties, processes, and tests for design. Hanser: Munich 1993.

American Society for Testing and Materials. ASTM D1238-04c: Test method for melt flow rates of thermoplastics by extrusion plastometer. ASTM 2007.

American Society for Testing and Materials. ASTM D792-00: Test methods for density and specific gravity (relative density) of plastics by displacement. ASTM 2007.

Smith BC. Infrared spectral interpretation: a systematic approach. CRC Press 1999.

Coates J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry. John Wiley & Sons: Chichester 2000.

Alig I, Lellinger D, Steinhoff B, Fischer D. Espectroscopia por ultra-som permite monitorar características da carga em compostos de PP. Plástico Industrial 2007; 107: 32.

Rabello MS. Aditivação de polímeros, Artliber Editora, São Paulo 2000.

Downloads

Published

2012-11-01

How to Cite

Alberton, J., Martelli, S. M., & Soldi, V. (2012). Obtention and Characterization of Polypropylene, Calcium Carbonate and Poly(ethylene-co-vinyl acetate) Composites. Journal of Research Updates in Polymer Science, 1(1), 5–13. https://doi.org/10.6000/1929-5995.2012.01.01.2

Issue

Section

Articles