Fabrication and Characterization of PVA-Gelatin-Nano Crystalline Cellulose based Biodegradable Film: Effect of Gamma Radiation

Authors

  • Nanda Karmaker Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • Farhana Islam Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • Md. Naimul Islam Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • Md. Razzak Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • Farjana A. Koly Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • A.M. Sararuddin Chowdhury Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
  • Ruhul A. Khan Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh

DOI:

https://doi.org/10.6000/1929-5995.2019.08.02

Keywords:

Polyvinyl Alcohol, Nano Crystalline Cellulose, Biodegradable, Gelatin, Gamma Radiation.

Abstract

Poly Vinyl Alcohol (PVA) films were prepared using solution casting. The Tensile Strength (TS), Tensile Modulus (TM) and Elongation at break (Eb) of the prepared films were found to be 23.58 MPa, 32 MPa and 302% respectively. Moisture content and water uptake analysis were also checked. Then, gelatin and nano crystalline cellulose (NCC) were incorporated into PVA film and again physchio-mechanical properties were measured. The TS, TM and Eb values of PVA/Gelatin-based films were 23.57 MPa, 114.58 MPa, 48.10% respectively. On the other hand, PVA/Gelatin/NCC-based films showed the TS, TM, and Eb values of 32.92 MPa, 129.8 MPa, 58.5% respectively. Thermal degradation test was accomplished by Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Spectroscopic analysis was also done by Fourier Transfer Infra-Red (FTIR). The soil degradation test confirmed the inherent biodegradable nature of the films. The prepared bio-polymeric films were exposed to gamma radiation. It was found that at 6 kGy dose the mechanical properties of the films improved significantly.

References

Khan MA, Khan RA, Zaman H, Hossain MA, Khan AH, Effect of gamma radiation on the physico-mechanical and electrical properties of jute fiber-reinforced polypropylene composites J Reinf Plast Compos 2009; 28: 1651. https://doi.org/10.1177/0731684408090365 DOI: https://doi.org/10.1177/0731684408090365

Li C, Zhao Q, Deng H, Chen C, Wang K, Zhang Q, Chen F, Fu Q. Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. Polym Int 2011; 60: 1629. https://doi.org/10.1002/pi.3141 DOI: https://doi.org/10.1002/pi.3141

Poletto M, Ornaghi HL, Zattera A. Native cellulose: structure, characterization and thermal properties. J Materials 2014; 7(9): 6105-6119. https://doi.org/10.3390/ma7096105 DOI: https://doi.org/10.3390/ma7096105

Meng F, Zhang Y, Xiong Z, Wang G, Li F, Zhang L. Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos Part B-Eng 2018; 143: 1-8. https://doi.org/10.1016/j.compositesb.2017.12.009 DOI: https://doi.org/10.1016/j.compositesb.2017.12.009

Shahbazi M, Rajabzadeh G, Rafe A, Ettelaie R, Ahmadi SJ. The physico-mechanical and structural characteristics of blend film of poly (vinyl alcohol) with biodegradable polymers as affected by disorder-to-order conformational transition. Food Hydrocoll 2016; 60: 393-404. https://doi.org/10.1016/j.foodhyd.2016.03.038 DOI: https://doi.org/10.1016/j.foodhyd.2016.03.038

Nakano Y, Bin Y, Bando M, Nakashima T, Okuno T, Kurosu H, Matsuo. Structure and mechanical properties of chitosan/poly (vinyl alcohol) blend films. Macromol Symp 2007; 258(1): 63-81. https://doi.org/10.1002/masy.200751208 DOI: https://doi.org/10.1002/masy.200751208

Mohsin M, Hossin A, Haik Y. Thermal and mechanical properties of poly (vinyl alcohol) plasticized with glycerol. J Appl Polym Sci 2011; 122(5): 3102-3109. https://doi.org/10.1002/app.34229 DOI: https://doi.org/10.1002/app.34229

Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 2018; 25(8): 7287-7298. https://doi.org/10.1007/s11356-018-1234-9 DOI: https://doi.org/10.1007/s11356-018-1234-9

Zaman HU, Khan MA, Khan RA, Improvement of physico-mechanical, thermomechanical, thermal and degradation properties of PCL/gelatin biocomposites: Effect of gamma radiation. Open J Compos Mater 2012; 2(01): 15.

Jo C, Kang H, Lee NY, Kwon JH, Byun MW. Pectin-and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat Phys Chem 2005; 72(6): 745-750. https://doi.org/10.1016/j.radphyschem.2004.05.045 DOI: https://doi.org/10.1016/j.radphyschem.2004.05.045

Kozlov PV, Burdygina GI. The structure and properties of solid gelatin and the principles of their modification. Polym 1983; 24(6): 651-666. https://doi.org/10.1016/0032-3861(83)90001-0 DOI: https://doi.org/10.1016/0032-3861(83)90001-0

Gul-E-Noor F, Khan MA, Ghoshal S, Mazid RA, Sarwaruddin Chowdhury AM, Khan RA. Grafting of 2-ethylhexyl acrylate with urea on to gelatin film by gamma radiation. J Macromol Sci A 2009; 46(6): 615-624. https://doi.org/10.1080/10601320902851926 DOI: https://doi.org/10.1080/10601320902851926

Khan RA, Beck S, Dussault D, Salmieri S, Bouchard J, Lacroix M. Mechanical and barrier properties of nanocrystalline cellulose reinforced poly (caprolactone) composites: Effect of gamma radiation. J Appl Polym Sci 2013; 129(5): 3038-3046. https://doi.org/10.1002/app.38896 DOI: https://doi.org/10.1002/app.38896

Liu Y, Li L, Pan N, Wang Y, Ren X, Xie Z, Buschle‐Diller G, Huang TS. Antibacterial cellulose acetate films incorporated with N‐halamine‐modified nano‐crystalline cellulose particles. Polym Advan Technol 2017; 28(4): 463-469. https://doi.org/10.1002/pat.3906 DOI: https://doi.org/10.1002/pat.3906

El Miri N, Aziz F, Aboulkas A, El Bouchti M, Ben Youcef H, El Achaby M. Effect of plasticizers on physicochemical properties of cellulose nanocrystals filled alginate bionanocomposite films. Advan Polym Technol 2018; 37(8): 3171-3185. https://doi.org/10.1002/adv.22087 DOI: https://doi.org/10.1002/adv.22087

Lam E, Male KB, Chong JH, Leung AC, Luong JH. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 2012; 30(5): 283-290. https://doi.org/10.1016/j.tibtech.2012.02.001 DOI: https://doi.org/10.1016/j.tibtech.2012.02.001

Khan A, Huq T, Khan RA, Dussault D, Salmieri S, Lacroix M. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films. Radiat Phys Chem 2012; 81(8): 941-944. https://doi.org/10.1016/j.radphyschem.2011.11.056 DOI: https://doi.org/10.1016/j.radphyschem.2011.11.056

Bourtoom T. Edible protein films: properties enhancement. Int Food Res J 2009; 16(1): 1-9.

Downloads

Published

2019-08-27

How to Cite

Karmaker, N., Islam, F., Islam, M. N., Razzak, M., Koly, F. A., Chowdhury, A. S., & Khan, R. A. (2019). Fabrication and Characterization of PVA-Gelatin-Nano Crystalline Cellulose based Biodegradable Film: Effect of Gamma Radiation. Journal of Research Updates in Polymer Science, 8, 7–14. https://doi.org/10.6000/1929-5995.2019.08.02

Issue

Section

Articles