Investigation of the Hydrolytic Stability of Polyurethane Applied to Vehicle Suspension Components

Authors

  • Mateus Rigotti Instituto Federal do Rio Grande do Sul, campus Farroupilha, 785 São Vicente, Farroupilha, Rio Grande do Sul, Brazil
  • Eveline Bishoff Instituto Federal do Rio Grande do Sul, campus Farroupilha, 785 São Vicente, Farroupilha, Rio Grande do Sul, Brazil
  • Douglas Alexandre Simon Instituto Federal do Rio Grande do Sul, campus Farroupilha, 785 São Vicente, Farroupilha, Rio Grande do Sul, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2019.08.08

Keywords:

Polyurethane, prepolymer, MOCA, hydrolysis, bushing, suspension

Abstract

Process parameters such as temperature and humidity, as well as formulation are the key factors in the manufacture of a polymeric component through a polyurethane prepolymer. These define the reaction kinetics, bonding and the resulting chemical interactions which determine the final characteristics of the material. One of the expected skills of polyurethane, when applied to components used in contact with water, is hydrolysis resistance. Consequently this research focused on exposure of a polymerized TDI (toluene diisocyanate) polyether polyurethane to different proportions of the curing agent, MOCA (4,4'-methylene-bis), in an environment susceptible to reactions with water at 70 °C. In this case, this material is applied in the manufacture of coil spring solid axle with trailing arms and Panhard rod suspension bushings. Mechanical tests and DSC (differential scanning calorimetry), TGA (thermogravimetry) and FT-IR (Fourier transform infrared) evaluations of the samples and prepolymer are conducted for the characterization of the different formulations, showing the negative relationship of the curing agent proportion parameters with the hydrolysis resistance. Here depolymerization of urethane and ether groups, as well as lower retention of yield stress are verified. These findings can subsidize developing predictive models for performance and lifetime of polyurethanes.

References

Le Gac PY, Choqueuse D, Melot D. Description and modeling of polyurethane hydrolysis used as thermal insulation in oil offshore conditions. Polymer Testing 2013; 32(8): 1588-93. https://doi.org/10.1016/j.polymertesting.2013.10.009 DOI: https://doi.org/10.1016/j.polymertesting.2013.10.009

Oertel G, Abele L. Polyurethane handbook: chemistry, raw materials, processing, application, properties 1994.

Szycher M. Handbook of polyurethanes, 2nd ed. Taylor & Francis Group, LLC 2012. https://doi.org/10.1201/b12343 DOI: https://doi.org/10.1201/b12343

Somarathna HM, Raman SN, Mohotti D, Mutalib AA, Badri KH. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials 2018; 190: 995-1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166 DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.166

Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbotham CL. The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal 2013; 49(7): 1782-95. https://doi.org/10.1016/j.eurpolymj.2013.03.034 DOI: https://doi.org/10.1016/j.eurpolymj.2013.03.034

Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. Materials Science and Engineering: C 2017; 80: 736-47. https://doi.org/10.1016/j.msec.2017.07.047 DOI: https://doi.org/10.1016/j.msec.2017.07.047

Pomes B, Derue I, Lucas A, Nguyen JF, Richaud E. Water ageing of urethane dimethacrylate networks. Polymer degradation and stability 2018; 154: 195-202. https://doi.org/10.1016/j.polymdegradstab.2018.06.003 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.06.003

Stokes K, Cobian K. Polyether polyurethanes for implantable pacemaker leads. Biomaterials 1982; 3(4): 225-31. https://doi.org/10.1016/0142-9612(82)90024-2 DOI: https://doi.org/10.1016/0142-9612(82)90024-2

Romero-Azogil L, Benito E, de Ilarduya AM, García-Martín MG, Galbis JA. Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer degradation and stability 2018; 153: 262-71. https://doi.org/10.1016/j.polymdegradstab.2018.05.009 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.05.009

Petrovic ZS, Ferguson J. Polyurethane Elastomers. Prog Polym Sci 1991; 16: 695-836. https://doi.org/10.1016/0079-6700(91)90011-9 DOI: https://doi.org/10.1016/0079-6700(91)90011-9

Santana RMC, Forte MMC. Pré-polímeros de pu de alta funcionalidade a partir de poliéter diol. IPEN 2009.

Zimmer B, Nies C, Schmitt C, Possart W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part I: dry conditions. Polymer 2017; 115: 77-95. https://doi.org/10.1016/j.polymer.2017.03.020 DOI: https://doi.org/10.1016/j.polymer.2017.03.020

Zimmer B, Nies C, Schmitt C, Paulo C, Possart W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part II: moist conditions. Polymer 2018; 149: 238-52. https://doi.org/10.1016/j.polymer.2018.06.070 DOI: https://doi.org/10.1016/j.polymer.2018.06.070

Tian Q, Almásy L, Yan G, Sun G, Zhou X, Liu J, Krakovsky I, Veres M, Rosta L, Chen B. Small-angle neutron scattering investigation of polyurethane aged in dry and wet air. Express Polymer Letters 2014; 8(5). https://doi.org/10.3144/expresspolymlett.2014.38 DOI: https://doi.org/10.3144/expresspolymlett.2014.38

Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science 2007; 52(6): 915-1015. https://doi.org/10.1016/j.pmatsci.2006.11.001 DOI: https://doi.org/10.1016/j.pmatsci.2006.11.001

Caraculacu AA, Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Progress in Polymer Science 2001; 26(5): 799-851. https://doi.org/10.1016/S0079-6700(00)00033-2 DOI: https://doi.org/10.1016/S0079-6700(00)00033-2

Davies P, Evrard G. Accelerated ageing of polyurethanes for marine applications. Polymer Degradation and Stability 2007; 92(8): 1455-64. https://doi.org/10.1016/j.polymdegradstab.2007.05.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2007.05.016

Barendregt RB, Van Den Berg PJ. The degradation of polyurethane. Thermochim Acta 1980; 38(2): 181-195. https://doi.org/10.1016/0040-6031(80)87059-6 DOI: https://doi.org/10.1016/0040-6031(80)87059-6

Cauich-Rodríguez JV, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications. Advances in biomaterials science and biomedical applications 2013: 51-82.

Hong B, Xian G. Ageing of a thermosetting polyurethane and its pultruded carbon fiber plates subjected to seawater immersion. Construction and Building Materials 2018; 165: 514-22. https://doi.org/10.1016/j.conbuildmat.2018.01.042 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.042

Kumagai S, Motokucho S, Yabuki R, Anzai A, Kameda T, Watanabe A, Nakatani H, Yoshioka T. Effects of hard-and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers. Journal of analytical and applied pyrolysis 2017; 126: 337-45. https://doi.org/10.1016/j.jaap.2017.05.012 DOI: https://doi.org/10.1016/j.jaap.2017.05.012

Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2018; 90: 211-268. https://doi.org/10.1016/j.progpolymsci.2018.12.003 DOI: https://doi.org/10.1016/j.progpolymsci.2018.12.003

Prisacariu C. Polyurethane Elastomers. Springer-Verlag/Wien, 2011. https://doi.org/10.1007/978-3-7091-0514-6 DOI: https://doi.org/10.1007/978-3-7091-0514-6

Ludwick A, Aglan H, Abdalla MO, Calhoun M. Degradation behavior of an ultraviolet and hygrothermally aged polyurethane elastomer: Fourier transform infrared and differential scanning calorimetry studies. Journal of Applied Polymer Science 2008; 110(2): 712-8. https://doi.org/10.1002/app.28523 DOI: https://doi.org/10.1002/app.28523

Wilhelm C, Rivaton A, Gardette JL. Infrared analysis of the photochemical behaviour of segmented polyurethanes: 3. Aromatic diisocyanate based polymers. Polymer (Guildf) 1998; 39(5): 1223-1232. https://doi.org/10.1016/S0032-3861(97)00353-4 DOI: https://doi.org/10.1016/S0032-3861(97)00353-4

Rutkowska M, Krasowska K, Heimowska A, Steinka I, Janik H. Degradation of polyurethanes in sea water. Polymer degradation and Stability 2002; 76(2): 233-9. https://doi.org/10.1016/S0141-3910(02)00019-8 DOI: https://doi.org/10.1016/S0141-3910(02)00019-8

Wright P, Wright P. Improvements in the Hydrolytic Stability of Polyurethanes. Aircraft Engineering and Aerospace Technology 1967; 39(11): 20-3. https://doi.org/10.1108/eb034310 DOI: https://doi.org/10.1108/eb034310

Ossefort ZT, Testroet F. Hydrolytic stability of urethane elastomers. Rubber Chem Technol 1966; 39: 1308-1327. https://doi.org/10.5254/1.3547140 DOI: https://doi.org/10.5254/1.3547140

Scholienberger CS, Stewart FD. Thermoplastic Polyurethane Hydrolysis Stability. J Elastomers Plast 1971; 3: 28-56. https://doi.org/10.1177/009524437100300103 DOI: https://doi.org/10.1177/009524437100300305

Murata S, Nakajima T, Tsuzaki N, Yasuda M, Kato T. Synthesis and hydrolysis resistance of polyurethane derived from 2, 4-diethyl-1, 5-pentanediol. Polymer degradation and stability 1998; 61(3): 527-34. https://doi.org/10.1016/S0141-3910(97)00252-8 DOI: https://doi.org/10.1016/S0141-3910(97)00252-8

Delebecq E, Pascault JP, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chemical reviews 2012; 113(1): 80-118. https://doi.org/10.1021/cr300195n DOI: https://doi.org/10.1021/cr300195n

Wang TL, Hsieh TH. Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polymer degradation and stability 1997; 55(1): 95-102. https://doi.org/10.1016/S0141-3910(96)00130-9 DOI: https://doi.org/10.1016/S0141-3910(96)00130-9

Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. Journal of Applied Polymer Science 1994; 51(6): 1087-95. https://doi.org/10.1002/app.1994.070510615 DOI: https://doi.org/10.1002/app.1994.070510615

Gama N, Ferreira A, Barros-Timmons A. 3D printed cork/polyurethane composite foams. Materials & Design 2019: 107905. https://doi.org/10.1016/j.matdes.2019.107905 DOI: https://doi.org/10.1016/j.matdes.2019.107905

Król P, Pilch‐Pitera B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well‐defined prepolymers. Journal of applied polymer science 2007; 104(3): 1464-74. https://doi.org/10.1002/app.25011 DOI: https://doi.org/10.1002/app.25011

Downloads

Published

2020-01-23

How to Cite

Rigotti, M., Bishoff, E., & Simon, D. A. (2020). Investigation of the Hydrolytic Stability of Polyurethane Applied to Vehicle Suspension Components. Journal of Research Updates in Polymer Science, 8. https://doi.org/10.6000/1929-5995.2019.08.08

Issue

Section

Articles