Shaping Porous Materials for Hydrogen Storage Applications: A Review

Authors

  • Jianwei Ren HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa
  • Brian C. North HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa

DOI:

https://doi.org/10.6000/1929-6002.2014.03.01.3

Keywords:

Porous materials, hydrogen storage systems, shaping process, application-specific configuration, packing density

Abstract

Development of safe and effective hydrogen storage systems becomes a critical factor for further implementation of fuel cell and hydrogen technologies. Among new approaches aimed at improving the performance of such systems, the concept of porous materials-based adsorptive hydrogen storage is now considered as a long-term solution due to the reversibility, good kinetics and absence of thermal management issues. However, the low packing densities associated with the porous materials such as carbon structure materials, zeolites, metal-organic frameworks lead to the compromised volumetric capacity, potential pipe contaminations and difficulties in handling, when introducing the powdered adsorbents into hydrogen storage systems. Some efforts have been devoted to solve this problem by shaping the porous materials into beads, pellets or monoliths and achieve higher storage densities at more moderate temperatures and pressures.

This review will firstly state the essential properties of shaped structures for hydrogen adsorption, and then highlight the recent attributes that potentially can be utilized to shape porous materials into specific configurations for hydrogen storage applications. Later, several testing techniques on structured porous material will be also discussed.

References

Germain J, Fréchet JMJ, Svec F. Small 2009; 5: 1098-111. http://dx.doi.org/10.1002/smll.200801762

Stetson N. An overview of U.S. DOE’s activities for hydrogen fuel cell technologies, 2/27/2012, Clearwater, Floride, America.

Orimo S, Züttel A, Schlappbach L, Majer G, Fukunaga T, Fujii H. J Alloys Compd 2003; 356-357: 716-9. http://dx.doi.org/10.1016/S0925-8388(03)00175-0

Buczek B, Czepirski L, Zietkiewicz J. Adsorption 2005; 11: 877-80. http://dx.doi.org/10.1007/s10450-005-6039-8

Shi SZ, Hwang JY, Li X, Sun X, Lee BI. Int J Hydrogen Energy 2010; 35: 629-31. http://dx.doi.org/10.1016/j.ijhydene.2009.11.008

Azzouz A. Int J Hydrogen Energy 2012; 37: 5032-49. http://dx.doi.org/10.1016/j.ijhydene.2011.12.024

Schlichtenmayer M, Streppel B, Hirscher M. Int J Hydrogen Energy 2011; 36: 586-91. http://dx.doi.org/10.1016/j.ijhydene.2010.09.057

Pedicini R, Saccà, Carbone A, Passalacqua E. Int J Hydrogen Energy 2011; 36: 9062-8. http://dx.doi.org/10.1016/j.ijhydene.2011.04.176

Nechaev YS, Alexeeva OK. Int J Hydrogen Energy 2003; 28: 1433-43. http://dx.doi.org/10.1016/S0360-3199(03)00004-1

Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. The U.S. Catal Totay 2007; 120: 246-56. http://dx.doi.org/10.1016/j.cattod.2006.09.022

Materials-based hydrogen storage [homepage on the Internet]. Available from: http://www1.eere. enery.gov/hydro-genandfuelcells/storage /current_technology.html.

Marco-Lozar JP, Juan-Juan J, Suárez-García F, Cazorla-Amorós D, Linares-Solano A. Int J Hydrogen Energy 2012; 37: 2370-81. http://dx.doi.org/10.1016/j.ijhydene.2011.11.023

Kunowsky M, Marco-Lozar JP, Cazorla-Amorós D, Linares-Solano A. Int J Hydrogen Energy 2010; 35: 2393-402. http://dx.doi.org/10.1016/j.ijhydene.2009.12.151

U.S. Department of Energy, Targets for on-board hydrogen storage systems: Current R&D focus is on 2015 targets with potential to meet ultimate targets. Available from: Http://www1.eere.energy.gov/hydrogenandfuelcells/ pdfs/freesomcar_targets_explanations.pdf.

McWhorter S, Read C, Ordaz G, Stetson N. Curr Opin Solid St M Sci 2011; 15: 29-38. http://dx.doi.org/10.1016/j.cossms.2011.02.001

Yang J, Sudik A, Wolverton C, Siegel DJ. Chem Soc Rev 2010; 39: 656-75. http://dx.doi.org/10.1039/b802882f

Gross KJ, Carrington KR. Recommended best practice for the characterization of storage properties of hydrogen storage materials. http://www1.eere.energy.gov/hydrog-enandfuelcells/pdfs/best_practices_hydrogen_storage.pdf.

Technical system targets: onboard hydrogen storage for light-duty fuel cell vehicles. Available from: http://www1. eere.energy.gov /hydrogenandfuelcells/storage/pdfs/targets_ onboard _hydro_storage.pdf.

Bernauer O, Topler J, Noreus D, Hempelmann R, Richter D. Int J Hydrogen Energy 1989: 14:187-200. http://dx.doi.org/10.1016/0360-3199(89)90053-0

Quinn DF, MacDonald JA. Carbon 1992; 30(7): 1097-103. http://dx.doi.org/10.1016/0008-6223(92)90141-I

Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF. Carbon 2002; 40(15): 2817-25. http://dx.doi.org/10.1016/S0008-6223(02)00194-X

Jordá-Beneyto M, Lozano-Castelló D, Suárez-GarcÍa F, Cazorla-Amorós D, Linares-Solano Á. Micro Meso Mater 2008; 112: 235-42. http://dx.doi.org/10.1016/j.micromeso.2007.09.034

Balathanigaimani MS, Shim WG, Lee JW, Moon H. Micro Meso Mater 2009; 119: 47-52. http://dx.doi.org/10.1016/j.micromeso.2008.09.034

Balathanigaimani MS, Shim WG, Kim TH, Cho SJ, Lee JW, Moon H. Catal Today 2009; 146: 234-40. http://dx.doi.org/10.1016/j.cattod.2009.02.025

Singer JP, Mayergoyz A, Portet C, Schneider E, Gogotsi Y, Fischer JE. Micro Meso Mater 2008; 116: 469-72. http://dx.doi.org/10.1016/j.micromeso.2008.05.005

Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Science 2006; 313: 1760-3. http://dx.doi.org/10.1126/science.1132195

Kunowsky M, Marco-Lozar JP, Oya A, Linares-Solano A. Carbon 2012; 50: 1407-16. http://dx.doi.org/10.1016/j.carbon.2011.11.013

Sun J, Brady TA, Rood MJ, Lehmann CM. Energ Fuel 1997; 11: 316-22. http://dx.doi.org/10.1021/ef960201h

Biloe S, Goetz V, Mauran S. Carbon 2001; 39: 1653-62. http://dx.doi.org/10.1016/S0008-6223(00)00288-8

Finsy V, Ma L, Alaerts L, De Vos DE, Baron GV, Denayer JFM. Micro Meso Mater 2009; 120: 221-7. http://dx.doi.org/10.1016/j.micromeso.2008.11.007

Muto A, Bhaskar T, Tsuneishi S, Sakata Y, Ogasa H. Energ Fuel 2005; 19: 251-7. http://dx.doi.org/10.1021/ef0400316

Inomata K, Urabe KY, Hosono H, Araki T. Carbon 2002; 40: 87-93. http://dx.doi.org/10.1016/S0008-6223(01)00084-7

GarcÍa Blanco AA, Alexandre de Oliveira JC, López R, Moreno-Piraján JC. Collod Surface A: Physicochem Eng Aspects 2010; 357: 74-83.

Nakagawa Y, Molina-Sabio M, Rodriuez-Reinoso F. Micro Meso Mater 2007; 103: 29-34. http://dx.doi.org/10.1016/j.micromeso.2007.01.029

Hou PX, Orikasa H, Itoi H, Nishihara H, Kyotani T. Carbon 2007; 45: 2011-6. http://dx.doi.org/10.1016/j.carbon.2007.05.029

Celzard A, Albiniak A, Jasienko-Halat M, Marêché JJ. Furdin G. Carbon 2005; 43: 1990-9. http://dx.doi.org/10.1016/j.carbon.2005.03.022

Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K. J Phys Chem B 2003; 107: 4681-8. http://dx.doi.org/10.1021/jp0278263

Guan C, Loo LS, Wang K, Yang C. Energy Convers Manage 2011; 52: 1258-62. http://dx.doi.org/10.1016/j.enconman.2010.09.022

Biloé S, Goetz V, Mauran S. Carbon 2001; 39: 1653-62. http://dx.doi.org/10.1016/S0008-6223(00)00288-8

Hesse M, Mueller U, Yaghi OM, inventor. Shaped bodies containing metal-organic frameworks. United States Patent US7524444 B2, 2009Apr.

Liu D, Purewal JJ, Yang J, Sudik A, Maurer S, Mueller U, Ni J, Siegel DJ. Int J Hydrogen Energy 2012; 37: 6109-17. http://dx.doi.org/10.1016/j.ijhydene.2011.12.129

Purewal J, Liu D, Sudik A, Veenstra M, Yang J, Maurer S, Müller U, Siegel DJ. J Phys Chem C 2012; 116: 20199-212. http://dx.doi.org/10.1021/jp305524f

Purewal JJ, Liu D, Yang J, Sudik A, Siegel DJ, Maurer S, Müller U. Int J Hydrogen Energy 2012; 37: 2723-7. http://dx.doi.org/10.1016/j.ijhydene.2011.03.002

Hu YH, Zhang L. Physil Rev B 2010; 81: 174103-7. http://dx.doi.org/10.1103/PhysRevB.81.174103

Xu C, Yang J, Veenstra M, Sudik A, Purewal JJ, Ming Y, Bardy BJ, Warner J, Maurer S, Müeller U, Siegel DJ. Int J Hydrogen Energy 2013; 38: 3268-74. http://dx.doi.org/10.1016/j.ijhydene.2012.12.096

Zacharia R, Cossement D, Lafi L, Chahine R. J Mater Chem 2010; 20: 2145-51. http://dx.doi.org/10.1039/b922991d

Dailly A, Poirier E. Energy Environ Sci 2011; 4: 3527-34.

Ardelean O, Blanita G, Borodi G, Lazar MD, Misan I, Coldea I, Lupu D. Int J Hydrogen Energy 2013; 38: 7046-55. http://dx.doi.org/10.1016/j.ijhydene.2013.03.161

Oh H, Blanita G, Lupu D, Hirscher M. RSC Adv 2014; 4: 2648-51. http://dx.doi.org/10.1039/c3ra46233a

Peterson GW, DeCoste JB, Glover TG, Huang YG, JasujaH, Walton KS. Micro Meso Mater 2013; 179: 48-53. http://dx.doi.org/10.1016/j.micromeso.2013.02.025

Tagliabur M, Rizzo C, Millini R, Dietzel PDC, Blom R, Zanardi S. J Porous Mater 2011; 18: 289-96. http://dx.doi.org/10.1007/s10934-010-9378-0

Liu J, Tian J, Thallapally PK, McGrail BP. J Phys Chem C 2012; 116: 9575-81. http://dx.doi.org/10.1021/jp300961j

Kim J, Kim SH, Yang ST, Ahn WS. Micro Meso Mater 2012; 161: 48-55. http://dx.doi.org/10.1016/j.micromeso.2012.05.021

Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG. Ind Eng Chem Res 2003; 42: 3263-72. http://dx.doi.org/10.1021/ie010953l

Küsgens P, Zgaverdea A, Fritz HG, Siegle S, Kaskel S. J Am Ceram Soc 2010; 93: 2476-9. http://dx.doi.org/10.1111/j.1551-2916.2010.03824.x

Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M. Adv Funct Mater 2007; 17(16): 3083-7. http://dx.doi.org/10.1002/adfm.200700518

Taguchi A, Smått JH, Lindén M. Adv Mater 2003; 15: 1209-11. http://dx.doi.org/10.1002/adma.200304848

Kabbour H, Baumann TF, Satcher Jr. JH, Saulnier A, Ahn CC. Chem Mater 2006; 18(26): 6085-7. http://dx.doi.org/10.1021/cm062329a

Baumann TF, Worsley MA, Han YJ, Satcher Jr. JH. J. Non-Crystalline Solids 2008; 354: 3513-5. http://dx.doi.org/10.1016/j.jnoncrysol.2008.03.006

Li WC, Lu AH, Schüth F. Chem Mater 2005; 17: 3620-6. http://dx.doi.org/10.1021/cm050345m

Zhang WL, Tao HX, Zhang BH, Ren JW, Lu GZ, Wang YQ. Carbon 2011; 49: 1811-20. http://dx.doi.org/10.1016/j.carbon.2010.12.050

Yeon SH, Knoke I, Gogotsi Y, Fischer JE. Micro Meso Mater 2010; 131: 423-8. http://dx.doi.org/10.1016/j.micromeso.2010.02.002

Lachawiec Jr. A, Qi G, Yang RT. Langmuir 2005; 21(24): 11418-24. http://dx.doi.org/10.1021/la051659r

Zhang H, Copper AI. Chem Mater 2002; 14: 4017-20. http://dx.doi.org/10.1021/cm0206643

O’Neill LD, Zhang HF, Bradshaw D. J Mater Chem 2010; 20: 5720-6. http://dx.doi.org/10.1039/c0jm00515k

Kawatra SK, Ripke SJ. Int J Miner Process 2002; 65(3-4): 141-9. http://dx.doi.org/10.1016/S0301-7516(01)00062-X

Vogel JC, Quass FW. J Chem Metal Min Soc S Af, Part-I 1937; 469-78.

Yancy HF, Zane RE. Comparison of methods for determining the friability of coal, U.S. Bureau of Mines report of Investigations vol. 3215, 1933: 1-24.

Sahoo R. Powder Technol 2007; 176: 77-87. http://dx.doi.org/10.1016/j.powtec.2007.02.013

Pal L, Joyce MK, Fleming PD. Tappl J 2006; 5: 10-6.

Flow gas viscosity [homepage on the Internet]. Available from: http:// www.lmnoeng.com/Flow/GasViscosity.htm

Crane Company. Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410 (TP 410), 1988.

Mokadam RG. J Appl Mech 1961; 28: 208-12. http://dx.doi.org/10.1115/1.3641653

Carson FT. Bur Standards J Res 1934; 12: 587-608. http://dx.doi.org/10.6028/jres.012.055

Jr. Bublitz WJ. A study of the air permeability of paper at high pressures. Mater's thesis, Appleton, Wis., The Institute of Paper Chemistry, 1947; p. 89-90.

Coupe RR. Proc Tech Sect British Paper & Board Makers' Assoc. 31, 1950; 2: 383-457.

Zhou W, Wu H, Yildirim T, Simpson JR, High Walker AR. Phys Rev B 2008; 78: 054114: 1-5.

Lock N, Wu Y, Christensen M, Cameron LJ, Peterson VK, Bridgeman AJ, Kepert CJ, Iversen BB. J Phy Chem C 2010; 114: 16181-6. http://dx.doi.org/10.1021/jp103212z

Downloads

Published

2014-03-25

How to Cite

Ren, J., & North, B. C. (2014). Shaping Porous Materials for Hydrogen Storage Applications: A Review. Journal of Technology Innovations in Renewable Energy, 3(1), 12–20. https://doi.org/10.6000/1929-6002.2014.03.01.3

Issue

Section

Articles