Solvent Isotope Effect on Transfer Hydrogenation of H2O with Glycerine under Alkaline Hydrothermal Conditions

Authors

  • Zheng Shen National Engineering Research Center of Facilities Agriculture, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
  • Minyan Gu National Engineering Research Center of Facilities Agriculture, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
  • Shiyang Liu National Engineering Research Center of Facilities Agriculture, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
  • Wenjie Dong National Engineering Research Center of Facilities Agriculture, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
  • Yalei Zhang National Engineering Research Center of Facilities Agriculture, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China

DOI:

https://doi.org/10.6000/1929-6002.2014.03.02.5

Keywords:

Solvent isotope effect, transfer hydrogenation, glycerine, hydrothermal reaction.

Abstract

Solvent isotope effect was investigated with 1H-, 2H-NMR, LC-MS and Gas-MS analyses on transfer hydrogenation of H2O with glycerine under alkaline hydrothermal conditions. The results from solvent isotope studies showed that (1) the H on the β-C of lactate was almost exchanged by D2O, which suggests that the hydroxyl (-OH) group on the 2-C of glycerine was first transformed into a carbonyl (C=O) group and then was converted back into a -OH group to form lactate; (2) The presence of large amounts of D was found in the produced hydrogen gas, which shows that the water molecules acted as a reactant; and (3) D% in the produced hydrogen gas was far more than 50%, which straightforwardly shows that acetol was formed in the first place as the most probable intermediate by undergoing a dehydration reaction rather than a dehydrogenation reaction.

References

Durisch W, Tille D, Wörz A, Plapp W. Characterisation of photovoltaic generators. Applied Energy 2000; 65(1-4): 273-84. http://dx.doi.org/10.1016/S0306-2619(99)00115-4

Gibson TL, Kelly NA. Solar photovoltaic charging of lithium-ion batteries. Journal of Power Sources 2010; 195(12): 3928-32. http://dx.doi.org/10.1016/j.jpowsour.2009.12.082

Kalogirou SA. Solar Energy Engineering, Processes and Systems. First ed. London WC1X 8RR, UK: Elsevier Inc.; 2009.

Foster R, Ghassemi M, Cota A. Energy and the Environment. Ghassemi A, editor. Boca Raton, FL 33487-2742: Taylor and Francis Group, LLC; 2010.

Skompska M. Hybrid conjugated polymer/semiconductor photovoltaic cells. Synthetic Metals 2010; 160(1-2): 1-15. http://dx.doi.org/10.1016/j.synthmet.2009.10.031

Fthenakis VM, Kim HC. Photovoltaics: Life-cycle analyses. Solar Energy 2011; 85(8): 1609-28. http://dx.doi.org/10.1016/j.solener.2009.10.002

Jia Y, Yang L, Qin W, Yin S, Zhang F, Wei J. Efficient polymer bulk heterojunction solar cells with cesium acetate as the cathode interfacial layer. Renewable Energy 2013; 50(0): 565-9. http://dx.doi.org/10.1016/j.renene.2012.07.012

Sharma GD, Saxena D, Sangodkar SG, Roy MS. Study of some organic polymeric materials for electrical and optoelectrical devices. Indian Journal of Engineering & Materials Science 2000; 7: 278-81.

Kumar H, Kumar P, Chaudhary N, Bhardwaj R, Sharma GD, Venkatesu P, et al. Temperature effect on the performance of phthalocyanine based photovoltaic devices. Indian Journal of Engineering & Materials Science 2010; 17: 358-62.

Nurfazliana MF, Kamaruddin SA, Alias MS, Nafarizal N, Saim H, Sahdan MZ. Zinc Oxide Nanostructures for Efficient Energy Conversion in Organic Solar Cell. Journal of Technology Innovations in Renewable Energy 2014; 3(1): 31-5. http://dx.doi.org/10.6000/1929-6002.2014.03.01.5

Arranz-Andrés J, Blau WJ. Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 2008; 46(15): 2067-75. http://dx.doi.org/10.1016/j.carbon.2008.08.027

Bundgaard E, Krebs FC. Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells 2007; 91(11): 954-85. http://dx.doi.org/10.1016/j.solmat.2007.01.015

Cai W, Gong X, Cao Y. Polymer solar cells: Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells 2010; 94(2): 114-27. http://dx.doi.org/10.1016/j.solmat.2009.10.005

Mozer AJ, Sariciftci NS. Conjugated polymer photovoltaic devices and materials. Comptes Rendus Chimie 2006; 9(5-6): 568-77. http://dx.doi.org/10.1016/j.crci.2005.03.033

Reyes-Reyes M, López-Sandoval R, Liu J, Carroll DL. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites. Solar Energy Materials and Solar Cells 2007; 91(15-16): 1478-82. http://dx.doi.org/10.1016/j.solmat.2007.04.023

Wienk MM, Struijk MP, Janssen RAJ. Low band gap polymer bulk heterojunction solar cells. Chemical Physics Letters 2006; 422(4-6): 488-91. http://dx.doi.org/10.1016/j.cplett.2006.03.027

Zhao DW, Tan ST, Ke L, Liu P, Kyaw AKK, Sun XW, et al. Optimization of an inverted organic solar cell. Solar Energy Materials and Solar Cells 2010; 94(6): 985-91. http://dx.doi.org/10.1016/j.solmat.2010.02.010

Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications 2011; 19(1): 84-92. http://dx.doi.org/10.1002/pip.1088

Service RF. Outlook Brightens for Plastic Solar Cells. Science 2011 April 15, 2011; 332(6027): 293.

Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008; 92(7): 686-714. http://dx.doi.org/10.1016/j.solmat.2008.01.005

Heremans P, Cheyns D, Rand BP. Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture. Accounts of Chemical Research 2009; 42(11): 1740-7. http://dx.doi.org/10.1021/ar9000923

Minnaert B, Burgelman M. Efficiency Potential of Organic Bulk Heterojunction Solar Cells. Progress in Photovoltaics: Research and Applications 2007; 15: 741-8. http://dx.doi.org/10.1002/pip.797

Gupta D, Mukhopadhyay S, Narayan KS. Fill factor in organic solar cells. Solar Energy Materials and Solar Cells 2010; 94(8): 1309-13. http://dx.doi.org/10.1016/j.solmat.2008.06.001

Muhammad FF, Sulaiman K. Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 2011; 519(15): 5230-3. http://dx.doi.org/10.1016/j.tsf.2011.01.165

Poortmans J, Arkhipov V. Thin Film Solar Cells Fabrication, Characterization and Applications. West Sussex PO19 8SQ, England: John Wiley & Sons Ltd.; 2006. http://dx.doi.org/10.1002/0470091282

Guo T-F, Wen T-C, L'Vovich Pakhomov G, Chin X-G, Liou S-H, Yeh P-H, et al. Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells. Thin Solid Films 2008; 516(10): 3138-42. http://dx.doi.org/10.1016/j.tsf.2007.08.066

Spanggaard H, Krebs FC. A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells 2004; 83(2-3): 125-46. http://dx.doi.org/10.1016/j.solmat.2004.02.021

Chen L-M, Hong Z, Li G, Yang Y. Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials 2009; 21(14-15): 1434-49. http://dx.doi.org/10.1002/adma.200802854

Dennler G, Sariciftci NS. Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications. Proceedings of the IEEE 2005; 93(8): 1429-39. http://dx.doi.org/10.1109/JPROC.2005.851491

Krebs FC. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Organic Electronics 2009; 10(5): 761-8. http://dx.doi.org/10.1016/j.orgel.2009.03.009

Liu F, Shao S, Guo X, Zhao Y, Xie Z. Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer. Solar Energy Materials and Solar Cells 2010; 94(5): 842-5. http://dx.doi.org/10.1016/j.solmat.2010.01.004

Djara V, Bernède JC. Effect of the interface morphology on the fill factor of plastic solar cells. Thin Solid Films 2005; 493(1-2): 273-7. http://dx.doi.org/10.1016/j.tsf.2005.06.098

Hayashi Y, Hamada K, Takagi K, Takasu A, Takagi S, Soga T, editors. Investigation of PCBM Concentration on Photovoltaic Characteristics of Polymer Solar Cells with Blends of P3HT and PCBM. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion; 2006 May 2006.

Maennig B, Drechsel J, Gebeyehu D, Simon P, Kozlowski F, Werner A, et al. Organic p-i-n solar cells. Applied Physics A: Materials Science and Processing 2004; 79(1): 1-14. http://dx.doi.org/10.1007/s00339-003-2494-9

Cheyns D, Poortmans J, Gommans H, Genoe J, Heremans P. Stacked organic solar cells increase efficiency. SPIE Newsroom 2007: 1-3.

Hadipour A, de Boer B, Blom PWM. Organic Tandem and Multi-Junction Solar Cells. Advanced Functional Materials 2008; 18(2): 169-81. http://dx.doi.org/10.1002/adfm.200700517

Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science 2007 July 13, 2007; 317(5835): 222-5.

Yoo S, Potscavage Jr WJ, Domercq B, Han S-H, Li T-D, Jones SC, et al. Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing. Solid-State Electronics 2007; 51(10): 1367-75. http://dx.doi.org/10.1016/j.sse.2007.07.038

Vivo P, Jukola J, Ojala M, Chukharev V, Lemmetyinen H. Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air. Solar Energy Materials and Solar Cells 2008; 92(11): 1416-20. http://dx.doi.org/10.1016/j.solmat.2008.06.002

Kao P-C, Chu S-Y, Huang H-H, Tseng Z-L, Chen Y-C. Improved efficiency of organic photovoltaic cells using tris (8-hydroxy-quinoline) aluminum as a doping material. Thin Solid Films 2009; 517(17): 5301-4. http://dx.doi.org/10.1016/j.tsf.2009.03.147

Cravino A, Sariciftci NS. Double-cable polymers for fullerene based organic optoelectronic applications. Journal of Materials Chemistry 2002; 12(7): 1931-43. http://dx.doi.org/10.1039/b201558g

Cravino A, Zerza G, Maggini M, Bucella S, Svensson M, Andersson MR, et al. A Soluble Donor–Acceptor Double-Cable Polymer: Polythiophene with Pendant Fullerenes. Monatshefte für Chemie / Chemical Monthly 2003; 134(4): 519-27. http://dx.doi.org/10.1007/s00706-002-0555-y

Zerza G, Cravino A, Neugebauer H, Sariciftci NS, Gómez R, Segura JL, et al. Photoinduced Electron Transfer in Donor−Acceptor Double-Cable Polymers: Polythiophene Bearing Tetracyanoanthraquinodimethane Moieties. The Journal of Physical Chemistry A 2001; 105(17): 4172-6. http://dx.doi.org/10.1021/jp0037448

Cureton LT, Beyer FL, Turner SR. Synthesis and characterization of hexafluoroisopropylidene bisphenol poly(arylene ether sulfone) and polydimethylsiloxane segmented block copolymers. Polymer 2010; 51(8): 1679-86. http://dx.doi.org/10.1016/j.polymer.2010.02.010

Surapati M, Seino M, Hayakawa T, Kakimoto M-a. Synthesis of hyperbranched-linear star block copolymers by atom transfer radical polymerization of styrene using hyperbranched poly(siloxysilane) (HBPS) macroinitiator. European Polymer Journal 2010; 46(2): 217-25. http://dx.doi.org/10.1016/j.eurpolymj.2009.10.028

Stalmach U, de Boer B, Videlot C, van Hutten PF, Hadziioannou G. Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques. Journal of the American Chemical Society 2000; 122(23): 5464-72. http://dx.doi.org/10.1021/ja000160a

Masi JV, editor. Polymers: conductors, insulators, and active devices. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Technology Conference, 2003 Proceedings; 2003 23-25 Sept 2003.

Shirota Y. Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000; 10(1): 1-25. http://dx.doi.org/10.1039/a908130e

Koeppe R, Sariciftci NS. Photoinduced charge and energy transfer involving fullerene derivatives. Photochemical & Photobiological Sciences 2006; 5(12): 1122-31. http://dx.doi.org/10.1039/b612933c

Muhammad FF, Abdul Hapip AI, Sulaiman K. Study of optoelectronic energy bands and molecular energy levels of tris (8-hydroxyquinolinate) gallium and aluminum organometallic materials from their spectroscopic and electrochemical analysis. Journal of Organometallic Chemistry 2010; 695(23): 2526-31. http://dx.doi.org/10.1016/j.jorganchem.2010.07.026

Ye R, Baba M, Suzuki K, Mori K. Fabrication of highly air-stable ambipolar thin-film transistors with organic heterostructure of F16CuPc and DH-a6T. Solid-State Electronics 2008; 52(1): 60-2. http://dx.doi.org/10.1016/j.sse.2007.07.010

Chen Z, Ikeda S, Saiki K. Sexithiophene films on cleaved KBr(1 0 0) towards well-ordered semiconducting films. Materials Science and Engineering: B 2006; 133(1-3): 195-9. http://dx.doi.org/10.1016/j.mseb.2006.06.039

Mu JY, Chen ZX, Luong TTT. X-ray diffraction investigations of well-ordered sexithiophene films deposited on flexible substrates. Journal of Materials Processing Technology 2009; 209(3): 1491-4. http://dx.doi.org/10.1016/j.jmatprotec.2008.03.055

Sato T, Fujitsuka M, Shiro M, Tanaka K. Photoluminescence quenching in oligothiophene single crystal. Synthetic Metals 1998; 95(2): 143-8. http://dx.doi.org/10.1016/S0379-6779(98)00048-4

Iosip MD, Destri S, Pasini M, Porzio W, Pernstich KP, Batlogg B. New dithieno[3,2-b: 2',3'-d]thiophene oligomers as promising materials for organic field-effect transistor applications. Synthetic Metals 2004; 146(3): 251-7. http://dx.doi.org/10.1016/j.synthmet.2004.08.004

Murphy AR, Fréchet JMJ, Chang P, Lee J, Subramanian V. Organic Thin Film Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable Solubilizing Groups. Journal of the American Chemical Society 2004; 126(6): 1596-7. http://dx.doi.org/10.1021/ja039529x

Yamanari T, Taima T, Sakai J, Saito K. Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Solar Energy Materials and Solar Cells 2009; 93(6-7): 759-61. http://dx.doi.org/10.1016/j.solmat.2008.09.022

Downloads

Published

2014-05-28

How to Cite

Shen, Z., Gu, M., Liu, S., Dong, W., & Zhang, Y. (2014). Solvent Isotope Effect on Transfer Hydrogenation of H2O with Glycerine under Alkaline Hydrothermal Conditions. Journal of Technology Innovations in Renewable Energy, 3(2), 72–76. https://doi.org/10.6000/1929-6002.2014.03.02.5

Issue

Section

Articles