Study of a Solar PV-Wind-Battery Hybrid Power System for a Remotely Located Region in the Southern Algerian Sahara: Case of Refrigeration

Maamar Laidi, Salah Hanini, Brahim Abbad, Nachida Kasbadji Merzouk, Mohamed Abbas


The present work shows an experimental investigation that uses a combination of solar and wind energy as hybrid system (HPS) for electrical generation under the Algerian Sahara area. The generated electricity has been utilized mainly for cooling and freezing. The system has also integrated a gasoline generator to be more reliable. This system is not linked with conventional energy and is not fixed in one region as it is the case of the military base in the Algerian borders. The cooling load consisted of three containers of 10 m3 each with total electricity consumption of 45 kWh/day, two positive rooms (with an internal temperature of +2°C and an external temperature of 35°C) and one negative room (with an internal temperature of -20°C and an external temperature of 35°C). Measurements included the solar radiation intensity, the ambient temperature and the wind speed was collected from Adrar weather station (a windy place in Algeria) for the year of 2010. To simulate the hybrid power system (HPS) HOMER was used. Emissions and renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicator. The net present cost (NPC) and cost of energy (COE) are calculated for economic evaluation. It is found that, for Adrar climates, the optimum results of HPS show a 50% reduction of emissions with 47% of renewable energy fraction.


Environment, economy, algerian sahara area, hybrid power system, refrigeration, HOMER

Full Text:



  • There are currently no refbacks.

ISSN: 1929-6002