SUPPLEMENTARY INFORMATION

Calculated wave numbers, molecular conformation, calculated spectra, optimized molecular structures, experimental and calculated spectra, and polarized spectra are available as supplementary data.

Table S1: Comparison of the calculated harmonic wavenumbers (ω, cm⁻¹), relative infrared intensities (A, %), relative Raman scattering activities (S, %), Raman depolarization ratios for plane (P) and unpolarized (U) incident light, reduced mass (μ, amu), and force constant (mdyn·Å⁻¹, f) obtained in <u>trans-AZ</u> at the B3LYP/6-31G(d,p) level. Two wavenumbers appear for each ring mode. Of these wavenumbers that with the highest IR intensity is shown in bold type, and that with the highest Raman intensity in *italic* type.

Calculated values trans-AZ									Scaled trans-AZ				
B3LYP/6	-31G(d	,p)		В	3LYP/6	-311+G	(2d,p)			B3LYP/ 6- 31G(d,p)	B3LYP/6- 311+G (2d,p)	Exp.ª	Characterization ^b
ω	Α	S	ω	Α	S	μ	f	Ρ	U	ν	v		
24	0	0	17	0	0	3.7	0.0	0.70	0.82	45	35		τ(torsion)
62	2	0	61	1	0	5.4	0.01	0.57	0.73	81	77		Butterfly
84	4	0	84	2	0	4.7	0.02	0.75	0.86	102	99	86(2)	Cogwheel
108	0	0	99	0	0	6.2	0.04	0.75	0.86	125	114		Tilting
223	0	0	223	0	0	5.6	0.17	0.53	0.69	235	233	219(0)	Shearing
260	0	0	252	0	0	6.3	0.23	0.75	0.86	270	261	251(0)	$\gamma(N=N) + tilting$
307, 531	46	0	306, 529	31	0	4.8	0.27	0.69	0.81	315, 529	313, 527	362	15, δ (C-N) + δ (N=N)
308, 492	2	0	307, 485	0	0	4.9	0.27	0.69	0.82	316, 492	31 <i>4</i> , 485		16b, γ(CCC)
419, 422	0	0	416, <i>421</i>	0	0	2.9	0.31	0.75	0.86	422, 425	419, <i>4</i> 23	409(0)	16a, γ(CCC)
546, 626	11	1	549, 628	7	1	6.5	1.51	0.62	0.77	543, 619	547, 622	523(13)	6b, δCCC)
561, 699	13	0	558, 693	19	0	2.2	0.61	0.75	0.86	557, 689	555, <i>685</i>	544(18)	4, γ(CCC)
632, 684	2	0	634, 686	0	0	6.6	1.83	0.55	0.71	625, 675	628, 678	617(1)	6a, δ(CCC)
706, 781	100	0	700, 772	100	0	1.6	0.55	0.75	0.86	696, 767	692, 76 <i>1</i>	690(100)	11, γ(CH)
800	100	0	794	81	0	1.9	0.72	0.14	0.24	786	782	774(79)	10b, γ(C-N, C-H) + δ(N=N)
839	2	0	836	0	0	6.1	2.50	0.34	0.51	823	822		1, δ(CCC) + δ(N=N)
864, 865	0	0	851, <i>85</i> 2	0	0	1.2	0.53	0.75	0.86	847, 848	837, 838	834(1)	10a, γ(C-H)
940	0	0	937	0	0	6.9	3.55	0.65	0.78	919	920	913(1)	δ(N=N) + 18b, δ(C-N)
<i>950</i> , 955	15	0	<i>941</i> , 948	11	0	1.4	0.73	0.75	0.86	929, 933	<i>923</i> , 930	926(5)	17b, γ(C-H)
989, 989	0	0	985, 985	0	0	1.4	0.78	0.75	0.86	966, 966	966, 966	967(1)	17a, γ(C-H)
1008, 1008	2	0	1000, 1000	0	0	1.3	0.76	0.75	0.86	984, 984	980, 980	983(1)	5, γ(C-H)
1016, 1017	6	8	1019, 1019	2	16	6.2	3.81	0.23	0.38	992, 993	998, 998	1003(14)	12, δ(CCC)
1045, 1045	19	1	1039, 1039	18	0	2.1	1.32	0.03	0.07	1019, 1019	1018, 1018	1021(6)	18a, δ(C-H)
<i>1100</i> , 1104	20	1	1096, 1100	14	1	1.5	1.08	0.20	0.33	1072, 1076	1073, 1076	1070(8)	18b, δ(C-H)
1167, 1178	63	74	1158, 1176	38	100	2.2	1.74	0.30	0.46	<i>1136</i> , 1146	1132, 1149	1146(85)	9a, δ(C-H)
1185, 1186	0	2	1182, 1182	0	2	1.1	0.94	0.65	0.79	1153, 1154	1155, 1155	1155(10)	9b. δ(C-H)
1213, 1261	44	31	1205, 1248	21	21	1.6	1.40	0.33	0.49	1180, 1225	1177, 1219	1184(32)	7a. v(C-N. C-H)
1336, 1343	4	9	1333, 1341	7	10	3.6	3.78	0.36	0.53	1297, 1304	1300, 1308	1307(3)	3. δ(C-H)
1367, 1369	15	3	1347, 1348	5	5	1.7	1.87	0.38	0.55	1327, 1329	<i>1314</i> , 1315	1315(11)	14. $v(C=C)$
1487, 1494	22	61	1476, 1488	13	92	2.7	3.45	0.36	0.53	1441, 1448	1438, 1449	1454(17)	19b v(C-H C=C)
1515 1527	19	35	1506 1520	13	39	22	3.00	0.36	0.53	1468 1479	1467 1480	1473(50)	19a v(C-H, C=C)
1559	0	100	1542	0	80	44	6 20	0.36	0.53	1510	1501	1443(100)	v(N-N)+ 19a $v(C-H, C-C)$
1636 1642	a	0	1618 1624	5	0	6.0	9.28	0.00	0.00	1583 1589	1574 1580	1586(5)	8b v(C-C)
1654 1657	6	20	1634 1638	4	21	5.0	0.20	0.10	0.61	1601 1603	1590 1504	1505(31)	(0, v(0-0) + v(N-N))
3182 3182	6	20	3163 3163	- - 2	3	1 1	6.40	0.58	0.73	3059 3059	3060 3060	3044(36)	12 y(C H)
3102, 3102	29	7	2172 2172	10	0	1.1	6.46	0.30	0.75	2069, 2069	3070, 3070	3060(36)	тэ, v(С-п) 7b2 у(С-Ц)
3203 2202	100	15	2194 2404	10	12	1.1	6.50	0.75	0.04	2070 2070	3090 3090	3066(36)	
2212 2244	60	10	2102 2402	24	10	1.1	0.52	0.32	0.49	2000 2000	2000, 2000	2072(20)	$20a, v(C-\Pi)$
3213, 3214	03	14	3193, 3193	34	10		0.00	0.12	0.21	3000, 3089	3089, 3089	3013(36)	2, V(C-H)
3229, 3229	15	4	3207, 3207	9	4	1.1	6.62	0.15	0.26	3104, 3104	3102, 3102	3085(36)	20b?, v(C-H)

^aExperimental values from ref. [35b,36b-d]. In parentheses appear the intensity. ^bv-stretching, δ-in-plane bending, γ-out-of-plane bending, τ-torsion, Γ-rocking.

Calc	ulated AZ+PMMA	Scaled AZ+PMMA					
B	3LYP/6-31G(d,p)		B3LYP/6-31G(d,p)				
ω	Α	S	ν	Δν ^c			
24	0	0	45	0			
56	0	0	76	5			
84	3	0	102	0			
142	0	0	158	-33			
210	0	0	222	12			
274	3	1	284	-14			
<i>342</i> , 537	17	0	348, 535	-33, -6			
<i>294</i> , 482	4	0	303, 482	13, 10			
421, <i>4</i> 24	1	0	424, <i>4</i> 27	-2, -2			
549, 626	0	1	546, 619	-3, 0			
562, 701	3	0	558, 691	-1, -2			
632, 683	1	0	625, 674	0, 1			
709, 783	35	0	699, <i>769</i>	-3, -2			
801	31	0	786	0			
838	1	0	822	1			
<i>862</i> , 869	3	1	<i>845</i> , 851	2, -3			
930	4	1	910	9			
948, <i>958</i>	7	0	927, 936	2, -3			
<i>984</i> , 1001	1	0	<i>961</i> , 977	5, -11			
1005, <i>1021</i>	3	0	981, <i>996</i>	3, -12			
1013, <i>1015</i>	3	5	989, <i>9</i> 91	3, 2			
<i>104</i> 2, 1047	2	2	<i>1016</i> , 1021	2, -2			
<i>1104</i> , 1108	14	0	<i>1076</i> , 1079	-4, -3			
<i>1169</i> , 1182	27	63	<i>1138</i> , 1150	-2, -4			
1186, 1186	100	2	1154, 1154	-1, 0			
<i>1213</i> , 1261	13	21	<i>1180</i> , 1225	0, 0			
1335, <i>1343</i>	2	8	1296, <i>1304</i>	1, 0			
1365, <i>1370</i>	9	4	1325, <i>13</i> 29	2, 0			
<i>14</i> 87, 1491	8	56	<i>1441</i> , 1445	0, 3			
<i>1513</i> , 1527	7	38	<i>14</i> 66, 1479	2, 0			
1553	7	100	1504	6			
1633, 1639	4	0	1580, 1586	2, 3			
1651, <i>1655</i>	4	19	1598, <i>1601</i>	3, 1			
3184, <i>3186</i>	3	4	3061, <i>3062</i>	-2, -3			
3193, <i>320</i> 2	5	10	3069, <i>3078</i>	-1, -10			
<i>3204</i> , 3210	15	10	<i>3080</i> , 3085	-1, -6			
3214, 3216	11	24	3089, <i>3091</i>	-1, -2			
3227, 3257	4	9	3102, 3130	2, -26			

(Table S1). Continued.

 $^{c}\Delta\nu$ = v(scaled in AZ) - v(scaled in AZ+PMMA).

Table S2: Comparison of the calculated harmonic wavenumbers (ω, cm⁻¹), relative infrared intensities (A, %), relative Raman scattering activities (S, %), Raman depolarization ratios for plane (P) and unpolarized (U) incident light, reduced mass (μ, amu), and force constant (mdyn·Å⁻¹, f) obtained in <u>*cis*-AZ</u> at the B3LYP/6-31G(d,p) level.

Calculated values										scaled		
B3LYP/6	-31G(d,	p)		В	3LYP/6-	311+G	(2d,p)			B3LYP/ 6-31G(d,p)	B3LYP/6- 311+G(2d,p)	Characterization ^a
ω	Α	S	ω	Α	S	μ	f	Р	U	v	v	
46 , <i>48</i>	2	7	47, 48	1	3	4.1	0.01	0.56	0.72	66, 68	64, 65	τ(ring)
71, 159	5	1	65, 156	4	2	4.4	0.01	0.65	0.79	90, 174	81, 169	τ(ring)
274	0	1	272	0	2	4.4	0.19	0.11	0.19	284	280	Γ(ring)
174, 286	10	3	173, 293	6	5	5.2	0.09	0.44	0.61	188, 295	185, 300	15, δ(C-N) + γ(N=N)
413 , 416	5	10	412 , <i>414</i>	4	3	3.0	0.30	0.30	0.46	416, 419	415, 417	16a, γ(CCC)
434, 455	6	17	435 , 452	5	2	5.0	0.56	0.53	0.69	436, 456	437, 453	16b, γ(CCC)
509 , <i>550</i>	5	1	509 , <i>550</i>	6	0	4.7	0.84	0.52	0.68	508, 547	508, 547	6a, δ,γ(CCC)
609	6	4	612	6	10	5.3	1.16	0.28	0.44	603	607	$\gamma(N=N) + 4, \gamma(CCC)$
630, 633	0	8	633, 636	0	2	6.4	1.52	0.25	0.40	623, 626	627, 630	6b, δCCC)
699	5	0	702	23	0	2.8	0.82	0.75	0.86	689	694	4, γ(CCC)
708, 718	100	2	706, 712	100	1	1.7	0.52	0.75	0.86	698, 707	697, 703	11, γ(CH)
765	0	14	763	0	2	4.4	1.52	0.21	0.35	752	752	1, δ(CCC) + δ(N=N)
780 , 791	65	45	777 , 789	47	1	2.3	0.86	0.53	0.69	766, 777	766, 777	10b, γ(C-N, C-H) + δ(N=N)
853 , <i>854</i>	6	20	845 , <i>847</i>	2	2	1.3	0.53	0.37	0.54	836, 837	831, 833	10a, γ(C-H)
866	8	4	866	4	5	3.2	1.40	0.75	0.86	849	851	δ(N=N) + 10b, γ(C-N)
930, 935	36	2	929, 936	27	1	1.8	0.93	0.75	0.86	910, 914	912, 919	17b, γ(C-H)
973, 973	0	21	976, 978	0	0	1.4	0.78	0.44	0.61	951, 951	957, 958	17a, γ(C-H)
997, 997	2	28	996 , 997	1	0	1.3	0.77	0.55	0.71	974, 974	976, 977	5, γ(C-H)
1015, 1015	2	1	1018, 1018	1	27	6.1	3.74	0.05	0.09	991, 991	997, 997	12, δ(CCC)
1050 , <i>1051</i>	6	1	1045, 1045	6	5	2.2	1.41	0.02	0.03	1024, 1025	1023, 1023	18a, δ(C-H)
1106 , <i>110</i> 7	17	7	1100 , 1102	14	1	1.6	1.12	0.75	0.86	1078, 1078	1076, 1078	18b, δ(C-H)
1152, 1174	3	4	1146, 1167	1	52	3.4	2.63	0.17	0.28	1121, 1142	1121, 1141	7a, ν(C-N, C-H)
1187, 1187	0	8	1182, <i>11</i> 83	0	2	1.1	0.94	0.68	0.81	1155, 1155	1155, 1156	9b, δ(C-H)
1206, 1206	2	10	<i>1200</i> , 1201	0	1	1.3	1.10	0.71	0.83	1173, 1173	1173, 1174	9a, δ(C-H)
1331 , <i>133</i> 9	2	5	1315 , <i>13</i> 25	2	2	4.5	4.65	0.34	0.50	1292, 1300	1283, 1293	3, δ(C-H)
1357 , 1361	2	1	1352, 1354	0	1	1.5	1.62	0.74	0.85	1317, 1321	1319, 1321	14, ν(C=C)
1486 , 1492	10	1	1480 , <i>14</i> 87	7	1	2.2	2.89	0.72	0.84	1440, 1446	1442, 1449	19b, v(C-H, C=C)
1520, 1523	11	8	1514, 1517	8	13	2.1	2.83	0.37	0.54	1473, 1475	1474, 1477	19a, v(C-H, C=C)
1609	52	17	1587	33	100	9.0	13.32	0.30	0.46	1558	1545	ν(N=N)
1629 , 1636	8	5	1613 , 1620	6	4	5.2	7.96	0.75	0.86	1577, 1583	1570, 1576	8b, ν(C=C)
1648, 1657	14	8	1630, 1638	9	19	5.4	8.41	0.75	0.86	1595, 1603	1586, 1594	8a, ν(C=C) + ν(N=N)
3183, 3183	2	54	3164, 3 <i>16</i> 5	1	6	1.1	6.41	0.63	0.77	3060, 3060	3061, 3062	13, v(C-H)
3192, 3192	22	100	3171, 3 <i>17</i> 2	6	24	1.1	6.45	0.74	0.85	3068, 3068	3068, 3069	7b, ν(C-H)
3203, 3203	33	1	3182, 3182	13	15	1.1	6.51	0.75	0.86	3079, 3079	3078, 3078	20b, v(C-H)
3210 , 3211	65	69	3190, 3190	38	70	1.1	6.57	0.06	0.12	3085, 3086	3086, 3086	20a, v(C-H)
3218, 3218	8	6	3196, 3197	4	34	1.1	6.59	0.08	0.14	3093, 3093	3092, 3093	2, v(C-H)

^aν-stretching, δ-in-plane bending, γ-out-of-plane bending, τ -torsion, Γ-rocking.

Table S3: Comparison of the calculated harmonic wavenumbers (ω, cm⁻¹), scaled values and experimental ones obtained in the complex with Ni at three DFT levels and using the 6-31G(d,p) basis set.

	Calculated ω			Scaled v		Evn	Characterization	
B3LYP	M052X	M062X	B3LYP M052X N		M062X	Ξ×p		
727	755	753	716	732	732	721 w	δ (CC,CO) in ring	
1204	1221	1209	1171	1168	1161	1144 w	$\delta(CC, CH)$ in ring	
1260	1265	1256	1225	1209	1205	1211 w	δ (C-H) in ring	
1330	1370	1352 [⊳]	1291	1308	1296	1304 w	δ(C-H) in CH	
1413ª	1438	1436	1371	1371	1375	1377 m	δ (O-H) + δ (C-H) in CH ₂	
1492	1548	1539	1446	1474	1472	1462 s	v(C-O) + v(CC) in ring	
1684	1740	1734	1629	1654	1656	1629 w	ν(C-N)	
3006	3067	3048	2891	2897	2893	2853 s	ν_s (C-H) in CH ₂	
3048	3117	3096	2931	2944	2938	2925 s	$v_{as}(C-H)$ in CH_2	

^aCharacterized as: δ (C-H) in CH ^b+ δ (C-H) in ring.

Table S4: Comparison of the calculated harmonic wavenumbers (ω, cm⁻¹), scaled values and experimental ones obtained in the complex with Cu at three DFT levels and using the 6-31G(d,p) basis set.

	Calculated ω			Scaled v		Evn	Characterization	
B3LYP	M052X	M062X	B3LYP	M052X	M062X	Ľλβ		
732	734	735	721	712	715	721 w	δ(CC,CO) in ring	
1171	1201	1193	1140	1149	1146	1151 w	$\delta(CC)$ in ring	
1429 ^ª	1441	1430	1386	1374	1369	1376 m	δ (O-H) + δ (C-H) in CH ₂	
1493	1549	1548	1447	1475	1480	1462 s	v(C-O) + v(CC) in ring	
1676	1743	1741	1622	1657	1662	1628 w	ν(C-N)	
3006	3055	3036	2891	2886	2882	2854 s	v_s (C-H) in CH ₂	
3047	3101	3064	2930	2929	2908	2925 s	$v_{as}(C-H)$ in CH_2	

^a+ δ (C-H) in CH and in ring.

Table S5: Comparison of the calculated harmonic wavenumbers (ω, cm⁻¹), scaled values and experimental ones obtained in the complex with Zn at three DFT levels and using the 6-31G(d,p) basis set.

	Calculated ω			Scaled v		Evn	Characterization	
B3LYP	M052X	M062X	B3LYP	M052X	M062X	Exp		
712	732	736	702	710	716	702 w	δ(CC,CO) in ring	
1052ª	1079	1078	1026	1035	1038	1028 w	δ(C-C, C-H) in ring	
1086	1091	1082	1058	1046	1042	1052 w	δ(OH, CO) + δ(CH)	
1182	1203	1195	1150	1151	1148	1146 w	$\delta(CC)$ in ring	
1251	1262	1253	1216	1206	1203	1212 w	δ (C-H) in ring	
1325	1377 ^b	1345	1287	1314	1289	1301 w	δ(C-H) in CH	
1428	1434	1431	1385	1368	1370	1377 m	δ (O-H) + δ (C-H) in CH ₂	
1496	1537°	1537	1450	1464	1470	1461 m	v(C-O) + v(CC) in ring	
1667	1736	1730	1613	1650	1652	1610 w	v(C-N)	
3017	3066	3027	2901	2896	2873	2854 s	v_s (C-H) in CH ₂	
3073	3116	3095	2955	2943	2937	2923 s	$v_{as}(C-H)$ in CH_2	

^a+ δ (C-C, C-H) in –CH-CH₂ ^bCharacterized as: δ (CC) in ring. ^c+ δ (C-H) in CH₂.

Scheme S1: Complexes of Ni, Cu and Zn. Two different conformers can be obtained in these complexes by rotation around the bond length shown in red colour.

Figure S1: Theoretical scaled Raman spectrum in the 3300-2900 cm⁻¹ range using the scale equation procedure from the benzene molecule.

Figure S2: Theoretical scaled Raman spectrum in the 1700-50 cm⁻¹ range using the scale equation procedure from the benzene molecule.

Figure S3: Optimized molecular structure of the complex with Ni with the notation of their atoms.

E = -13363.147449 A.U.

Figure S4: Two views of the optimized molecular structure at the B3LYP/6-31G(d,p) level in conformer 2 of azobenzene complex with Ni.

E = -13494.599862 A.U.

Figure S5: Two views of the optimized molecular structure at the B3LYP/6-31G(d,p) level in conformer 2 of azobenzene complex with Cu.

Figure S6: Experimental IR spectrum of the complex with Ni, and theoretical scaled one at the B3LYP/6-31G(d,p) level with the assignment of the stronger bands.

Figure S7: Experimental IR spectrum of the complex with Cu, and theoretical scaled one at the B3LYP/6-31G(d,p) level with the assignment of the stronger bands.

Figure S8: Experimental IR spectrum of the complex with Zn, and theoretical scaled one at the B3LYP/6-31G(d,p) level with the assignment of the stronger bands.

Figure S9: Polarized absorption spectra at 45° and angular dependence at 318, 440 and 625 nm for Cu+AZ+PMMA after UV light irradiation for 0-10 min.

Figure S10: Polarized absorption spectra at 45° and angular dependence at 318 and 440 nm for **Zn+AZ+PMMA** after UV light irradiation for 0-10 min.

Figure S11: Polarized IR spectra at 45° and angular dependence of a polarizer in transmittance at 1628(C=N) and 1558 cm⁻¹ (N=N) for **Cu+AZ+PMMA** after UV light irradiation for 0-10 min.

Figure S12: Polarized IR spectra at 45° and angular dependence of a polarizer in transmittance at 1610(C=N) and 1558 cm⁻¹ (N=N) for **Zn+AZ+PMMA** after UV light irradiation for 0-10 min.