Determination of Ion-Pair Formation Constants for MA^+ Ions (M = Ca, Sr, Ba, Cu, Cd) with A^- = Picrate Ion in Water by Picric Acid Extraction into Benzene

Yoshihiro Kudo^{1,*}, Shinichi Nakajima² and Naoki Horiuchi¹

¹Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

²Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstracts: Ion-pair formation constants (K_{MA}^{0}) for MA⁺ = MPic⁺ and MCI⁺ in water were determined at 298 K and ionic strength \rightarrow 0 by extraction experiments of picric acid (HPic) in the presence of M(II) in the water phase into benzene (Bz) and by potentiometry with a commercial CI-selective electrode, respectively. Here, M denotes Ca(II), Sr(II), Ba(II), Cu(II), and Cd(II). In adding Pb(II) data, a relation between K_{MA}^{0} values was $K_{MCI}^{0} < K_{MPic}^{0}$ for a given M(II). For CdPic⁺, the K_{MA}^{0} value (= 136moI⁻¹ dm³) determined by the HPic extraction was somewhat larger than that (= 108) potentiometrically-determined before with a Cd²⁺-selective electrode, while for CaPic⁺ the former value (= 89) equaled the latter one (= 88) determined before with a Ca²⁺-selective electrode.

[17].

Keywords: Ion-pair formation constants, extraction, potentiometry, divalent metal ions, picrates, chlorides.

1. INTRODUCTION

It is well known that picrates are employed for extraction experiments [1-4], because they have essentially the higher extraction-ability into various diluents, while chlorides are well employed for electrochemical experiments [5-7], because they show the higher conductivity in aqueous solutions. There are systematic studies on ion-pair formation or association in the aqueous solutions with sulfates [8-11]. However, especially for the systems with divalent metal ions (M^{2+}) , the studies which determine ion-pair formation constants for the above picrates containing metal ions in water have been a few [12,13] unexpectedly. It seems to be obvious that the determination of the corresponding equilibrium constants promotes precise equilibria-analyses of various solvent extraction systems with picrates, such as the extraction of picrate of Cd(II) [14] or Pb(II) [15] (CdPic₂ or PbPic₂) by neutral ligands, such as crown ethers.

In the present paper, we determined the ion-pair formation constants (K_{MA}^{0}) for MA⁺ in water by the extraction experiments [12] of picric acid (HPic) in the presence of M²⁺ in the water phase into benzene (Bz) at 298 K and ionic strength (*I*) of aqueous solution \rightarrow 0. Here, M is divalent alkaline-earth metal, Cu(II), and Cd(II) and A⁻ shows Pic⁻. For comparisons with the Pic⁻ systems, the K_{MA}^{0} values at A⁻ = Cl⁻ were determined potentiometrically with a commercial Cl⁻selective

2. EXPERIMENTAL METHODS 2.1. Materials

electrode (CI-se) [16], except for M = Ba(II). The diluent Bz was selected from both its lower extraction-

ability to MA⁺ and MA₂ and its lower solubility into water

Purities of the chlorides{guaranteed pure reagent (GR) for Ca(II), Wako; > 99.2% for Sr(II), Kanto; > 99.2% for Ba(II), Kanto; > 98.0% for Cd(II), Kanto} and nitrates $\{> 98.5\%$ for Ca(II), Kanto; > 98.0% for Sr(II), Kanto; 99.9% for Ba(II), Wako; 99-104% for Cu(II), Wako; > 98.0% for Cd(II), Kanto} of M(II) were determined by the precipitation titration with K₂CrO₄ and the EDTA titration [18], respectively; that of $HPic xH_2O(> 99.5\%)$, Wako) were determined by the acid-base titration [18] with NaOH(> 97.0%, Wako) and phenolphthalein. Similarly, the purity of NaCl (>99.9%, Kanto), of which the aqueous solutions were used for preparing potentiometric calibration curves, was determined by the precipitation titration [18]. The commercial Bz(GR, Kanto) was saturated with water by washing three-times with pure water [12] and then employed as an organic phase for the extraction experiments. Other chemicals were of GR grades unless otherwise described. Water employed here were purified by the same method as that reported previously [8, 14, 15].

2.2. Methods

The experimental procedures for the HPic extraction and potentiometry with the CI-se and a reference

^{*}Correspondence Address to this author at the Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Tel: +81 43 290 2786; Fax: +81 43 290 2874; E-mail: iakudo@faculty.chiba-u.jp

electrode of Ag/AgCl/0.1 mol dm⁻³KCl/1.0 mol dm⁻³ KNO₃ were the same as those [12,16] reported previously. Also, the apparatuses, such as spectrophotometer, pH/lon meter, mechanical shaker, and centrifuge, used for the measurements and etc. were the same as those [12,15] employed before.

3. RESULTS AND DISCUSSION

3.1. Determination of K_{MA}^{0} for MA⁺ in Water

The determination methods of K_{MA}^{0} were the same as those [12,16] reported before. Hence, we describe here the essence of the both methods, namely the HPic extraction [12] and potentiometry with the Cl⁻-se [16].

For the HPic extraction into Bz, the following component equilibria were initially considered: $H^+ + Pic^- \Rightarrow HPic$ and $HPic \Rightarrow HPic_{Bz}$, where the subscript "Bz" refers to the Bz phase. When a strong electrolyte MX_2 is added in this system, the formation of $MPic^+$ occurs in the water (w) phase [12]:

$$M^{2+} + Pic^{-} + 2X^{-} \rightleftharpoons MPic^{+} + 2X^{-}, \qquad (1)$$

where the formation of MPic₂ in the w phase was neglected as a result of the present experiments (see below). Similarly, the MX^+ or MX_2 formation was neglected at $X^- = NO_3^-$. The MPic⁺ formation should cause a decrease in the distribution amount of HPic into Bz. Therefore, we can evaluate [MPic⁺] from the following equation [12].

$$[MPic^{+}] \approx (^{M}[HPic]_{BZ}/^{M}[H^{+}]) \{ \Delta D_{Pic}^{-1} - (^{M}[H^{+}] - [H^{+}])/K_{D,HPic} \}$$
(2)

with $\Delta D_{\text{Pic}}^{-1} = (^{M}[\text{H}^{+}]/^{M}D_{\text{Pic}}) - ([\text{H}^{+}]/D_{\text{Pic}})$. Here, the symbols, $^{M}[\text{HPic}]_{\text{Bz}}$, $^{M}[\text{H}^{+}]$, and $^{M}D_{\text{Pic}}$, denote quantities in the presence of M(II) in the w phase and others do those in the absence of M(II). The symbols, $K_{\text{D,HPic}}$ and D_{Pic} , refer to the distribution constant of HPic and a distribution ratio for the extracted Pic(-I), respectively, into Bz under the condition that M(II) is absent in the system. Basically, all the values in the right hand side (rhs) of Eq. (2) were experimentally determined [12]. So we obtained the K_{MPic} (= [MPic^+]/[M^{2+}]^{M}[Pic^-]) values at M / values from [MPic^+], [M^{2+}] (= [M]_{t} - [MPic^+]), and $^{M}[\text{Pic}^-] \{= ([\text{Pic}]_{t} - ^{M}[\text{HPic}]_{\text{Bz}} - [\text{MPic}^+])/(1 + K_{\text{HPic}} - ^{M}[\text{H}^+])\}, where ^{M}$ is expressed as $^{M}[\text{Pic}^-] + 2[M]_{t} + [M^{2+}] [12].$

Also, we can determine the K_{MPic}^{0} value with a plot of log K_{MPic} versus^MI [12] based on the extended Debye-Hückel (DH) equation:

$$\log K_{\rm MPic} \approx \log K_{\rm MPic}^{0} - 4A(^{\rm M})^{1/2} / \{1 + B\dot{a}(^{\rm M})^{1/2}\}$$
(3)

with the assumption that the activity coefficient of MPic⁺ equals that of Pic⁻. Here, [M]_t, [Pic]_t, and K_{HPic⁻¹}, and ^M/ denote a total concentration of MX₂, that of HPic in the initial w phase, the acid dissociation constant of HPic in water, and the ionic strength for the w phase with M(II) at equilibrium, respectively. The other symbols A, B, and å have the meanings which are usually employed for the extended DH equation at 298 K. Figure 1 shows an example for the plot of the BaPic₂ system. The dotted line was based on a non-linear regression analysis of the plot using Eq. (3) with a = 5 Å [19] for Ba^{2+} . The correlation coefficient (*R*) values of the other systems were 0.195 at MA⁺ = CaPic⁺, 0.536 at SrPic⁺, 0.337 at CuPic⁺, and 0.272 at CdPic⁺. Strictly speaking, the K_{MPic}^{0} values determined by the extraction experiments are those at $^{M}I \rightarrow 0$ for MPic⁺ in water saturated with Bz [12], as readers know.

Figure 1: Plot of log K_{BaPic} vs. $(^{M}h)^{1/2}$ for the BaPic₂ system by the extraction method. The broken line was a regression one at R = 0.637 based on Eq. (3).

Next, potentiometric measurements with the Cl⁻-se [16] were performed for the aqueous CaCl₂, SrCl₂, BaCl₂, and CdCl₂ solutions. Unfortunately, we were not able to obtain an adequate result for the K_{BaCl}^{0} determination. For the K_{MCl}^{0} determination by the Cl⁻ analysis, the following equations were used: $[M^{2+}] = [Cl]/(2 + K_{MCl}[Cl^{-}])$ and $[MCl^{+}] = 2K_{MCl}[M^{2+}]^{2}/(1 - K_{MCl}[M^{2+}])$ [16]. Using the analyzed [Cl⁻] values, the initial K_{MCl} values were evaluated by a successive approximation. Then, the thermodynamic K_{MCl}^{0} and K_{2}^{0} (= $[MCl_2]/a_{MCl}a_{Cl}(a_{Cl})$ values were determined by another

Figure 2: Plot of $(\Sigma a_k)/a_{Sr} vs. a_{Cl}$ for the SrCl₂ system with $k = Sr^{2+}$, SrCl⁺, and SrCl₂ by the potentiometry with the Cl⁻se. The broken lone was $(1.050 \pm 0.008) + (29.1\pm 2.9)a_{Cl}$ of a regression one at R = 0.909 based on a modified form of Eq. (4).

successive approximation, using the following equation [16]:

$$(\Sigma a_k)/a_{\rm M} = 1 + K_{\rm MCl}^{0} \cdot a_{\rm Cl} + K_{\rm MCl}^{0} K_2^{0} \cdot (a_{\rm Cl})^2, \tag{4}$$

where a_j means an activity of the species $j \{= M(II), MCI(+I), \&CI(-I)\}$. Figure **2** shows the plot of $(\Sigma a_k)/a_{Sr}$ *versus* a_{CI} for the SrCl₂ system with $k = Sr^{2+}$, SrCl⁺, and SrCl₂; namely, $\Sigma a_k = a_{Sr} + a_{SrCI} + [SrCl_2]$, where $a_{SrCI2} = [SrCl_2]$ was assumed. The intercepts and the *R* values of the other regression lines were 1.071 ± 0.007 and 0.961 for the CaCl⁺ system and 1.090 ± 0.005 and

0.998 for CdCl⁺, respectively. The K_2^0 value obtained for the CdCl₂ system in Table **1** coincided with those (= 8.7 & 13 mol⁻¹ dm³ [16]) reported before within experimental errors. Except for the CdCl₂ system, since a non-linear regression analysis with Eq. (4) [16] did not give the meaningful 2nd term in the rhs of Eq. (4), accordingly we employed the linear equation of $(\Sigma a_k)/a_M \approx 1 + K_{MCl}^0 a_{Cl}$ for the regression analysis. Results for the K_{MPic}^0 and K_{MCl}^0 values determined are summarized in Table **1**.

The K_{MPic}^{0} order was M = Cu(II) < Ca(II) <Pb(II) < Cd(II) ≤Ba(II) <Sr(II), while the K_{MCI}^{0} one was Cu(II) ≤ Mg(II) <Pb(II) <Sr(II) < Ca(II) < Cd(II). Only the order of Cu(II) <Pb(II) < Cd(II) is in common for these orders. Against these two orders, the ionic radii (r_c) [20] of M(II) were in the order Mg(II) <Cu(II) < Cd(II) < Ca(II) <Sr(II) ≤Pb(II) <Ba(II) (see Table 1). Also, ion size parameters (a) were in the order Pb(II) (4.5 Å) <Sr(II) = Cd(II) = Ba(II) (5) < Ca(II) = Cu(II) (6) < Mg(II) (8) [19]. There was no correlation between K_{MA}^{0} and r_c or a.

3.2. On the Reproducibility of the $K_{\rm MA}^{0}$ Values by the Determination Methods

The K_{CdPic}^{0} value (= 108 mol⁻¹ dm³ [13,16]) potentiometrically-determined previously with a Cd²⁺selective electrode was somewhat smaller than that (= 136) determined by the present HPic extraction. On the other hand, the K_{CaPic}^{0} value obtained from the HPic extraction equaled that [13,16] determined previously with a Ca²⁺-selective electrode (Table 1). These results may be dependent on types (or materials) of the electrodes employed; according to their catalogs [21],

Table 1: Ion-Pair or Complex Formation Constants for MA⁺ in Water at 298K

		κ _{MA} ⁰ /mol ⁻¹ dm ³	
M(II)	rcª/Å	MA ⁺ = MPic ^{+ b}	MCI ^{+ °}
Mg	0.720	^d	4.55 [°] [11], 0.77 ^f [23]
Са	1.00	89±10, 88 ⁹	41 ± 2, 40 ^g , 0.68 ^f [23]
Sr	1.18	152 ±13	29± 3, 0.54 ^f [23]
Ва	1.35	120 ± 6	^d , 0.34 ^t [23]
Cu	0.73	72 ±10	2.49 ^h , 4.0[25]
Cd	0.95	136 ±15, 108 ^g , 107 ^g	91 ± 4, 86 ^g , 89 ^g
			$(13 \pm 5)^{i}$
Pb	1.19	93 [14], 100 [14]	10 ⁱ , 9.5 [26], 37 ^k [27]

^alonic radii of the coordination number of six. See [20]. ^bValues determined with the HPic extraction experiments. ^cValues determined potentiometrically with the Clse. ^dNot be determined. ^eValue at $l \rightarrow 0$ calculated from the experimental *l* range of about 0.00032-0.15mol dm³. See [11]. ^fValue at \nvDash 1 mol dm³ (NaNO₃). See [23]. ^gValues determined potentiometrically with commercial M²⁺-selective electrodes at M = Ca(II) & Cd(II). See [8,13,16]. ^hValuein the [CI] range of about 9.8×10⁻⁵-4.9×10⁻³mol dm³. See [25]. ⁱK₂⁰ (= [CdCl₂]/a_{CdCl}a_{Cl}) value obtained here. ⁱValuein the [CI] range of 0.0148-3.97mol dm³. See [26]. ^kValue averaged in the *l* range of 0.02-0.12 mol dm³. See [27]. the former electrode was of a solid-state membrane, while the latter one was of a liquid membrane. Now, we cannot clearly explain the above results. Also, the K_{CdCl}^{0} and K_{CaCl}^{0} values determined with the Cl⁻se were in good agreement with those [16,8] determined previously with M²⁺-selective electrodes (Table 1). The above results indicate that essentially the both methods give good reproducible values.

For the potentiometric measurements with Cl⁻se, the K_{MCl}^{0} values were dependent on the dissociation of NaCl in water, because the calibration curves had been made from the aqueous NaCl solutions. That is, it means that the equilibrium constants are determined comparatively by using the dissociation of NaCl in water as a standard. The results for K_{MCl}^{0} can be kept at constant by the use of NaNO₃ and NaClO₄, according to the fact [22] that the K_{LiL} values at L = 19-crown-6 ether have been constant in conductometric titrations with LiCl, LiNO₃, and LiClO₄ in water.

The K_{MCl} values at $l = 1 \mod dm^{-3}$ were estimated from Eq. (3). Their values were 1.24 mol⁻¹ dm³ for M = Mg, 8 for Ca, and 5 for Sr. The K_{MgCl} value estimated from that at $l \rightarrow$ 0reported by Fischer and Fox [11] is close to that [23] reported by Majer and Štulík, while the K_{MCl} values determined here at Ca and Sr are about 10-times larger than those [23] by them (see Table 1).

4. CONCLUSION

The K_{MPic}^{0} values were determined at 298 K by the HPic extraction into Bz at M = Ca(II), Sr(II), Ba(II), Cu(II), and Cd(II). The K_{CaPic}^{0} value determined by the extraction method well agreed with that done by the Ca²⁺-se. Also, the K_{MCI}^{0} values determined by the CI⁻se were essentially in agreement with those by the Ca²⁺- and Cd²⁺-ses, although there may be positive errors in the values.

REFERENCES

- Rais J. Individual Extraction Constants of Univalent Ions in the System Water-Nitrobenzene. Collect Czech Chem Commun 1971; 36: 3253-3262. <u>http://dx.doi.org/10.1135/cccc19713253</u>
- [2] Takeda Y. Extraction of Alkali Metal Picrates with 18-Crown-6, Benzo-18-crown-6, and Dibenzo-18-crown-6 into Various Organic Solvents. Elucidation of Fundamental Equilibria Governing the Extraction-ability and -selectivity. Bunseki Kagaku (Analytical Chemistry) 2002; 51: 515-525 (in Japanese). http://dx.doi.org/10.2116/bunsekikagaku.51.515
- [3] Kudo Y, Harashima K, Hiyoshi K, Takagi J, Katsuta S, Takeda Y. Extraction of Some Univalent Salts into 1,2-Dichloroethane and Nitrobenzene: Analysis of Overall Extraction Equilibrium Based on Elucidating Ion-pair

Formation and Evaluation of Standard Potentials for Ion Transfers at the Interface between Their Diluents and Water. Anal Sci 2011; 27: 913-919. http://dx. doi.org/10.2116/analsci.27.913

- [4] Kudo Y, Nakamori T, Numako C. Extraction of Sodium Picrate by 3m-Crown-m Ethers and Their Mono-benzo Derivatives (m = 5, 6) into Benzene: Estimation of Their Equilibrium Potential Differences at the Less-polar Diluent/Water Interface by an Extraction Method. Journal of Chemistry 2016; in press.
- [5] Sanchez Vallejo LJ, Ovejero JM, Fernández RA, Dassie SA. Single Ion Transfer at Liquid/Liquid Interface. Int J Electrochem 2012; 2012: Article ID 462197, 34 pages. <u>http://dx.doi.org/10.1155/2012/462197</u>
- [6] Lagger G, Tomaszewski L, Osborne MD, Seddon BJ, Girault HH. Electrochemical Extraction of Heavy Metal Ions Assisted by Cyclic Thioether Ligands. J Electroanal Chem 1998; 51: 29-37.

http://dx.doi.org/10.1016/S0022-0728(97)00389-6

- [7] Nestor U, Wen H, Girma G, Mei Z, Fei W, Yang Y, Zhang C, Zhan D. Facilitated Li^{*} Ion Transfer across the Water/1,2-Dichloroethane Interface by the Solvation Effect. Chem Commun 2014; 50: 1015-1017. http://dx.doi.org/10.1039/c3cc47482h
- [8] Kudo Y, Todoroki D, Horiuchi N, Katsuta S, Takeda Y. Ion-Pair Formation of Sodium Salts of Several Oxo Anions and Cadmium Halides in Water and the Distribution of Monovalent Sulfate Ion Pairs in Nitrobenzene. J Chem & Eng Data 2010; 55: 2463-2469. http://dx.doi.org/10.1021/je900861h
- [9] Fischer FH, Fox AP. LiSO₄⁻, RbSO₄⁻, CsSO₄⁻, and (NH₄)₂SO₄ lon Pairs in Aqueous Solutions at Pressure up to 2000 atm. J Solution Chem 1978; 7: 561-570. <u>http://dx.doi.org/10.1007/BF01074872</u>
- [10] Wasylkiewicz S. Ion Association in Aqueous Solutions of Electrolytes. II. Mathematical Model for Sulphates of Bivalent Metals. Fluid Phase Equilibria 1990; 57: 277-296. <u>http://dx.doi.org/10.1016/0378-3812(90)85127-V</u>
- [11] Fischer FH, Fox AP. KSO₄⁻, NaSO₄⁻, and MgCl⁺ Ion Pairs in Aqueous Solutions up to 2000 atm. J Solution Chem 1977; 6: 641-650. http://dx.doi.org/10.1007/BF00645881
- [12] Kudo Y, Takahashi Y, Katsuta S, Takeda Y. Extraction of Several Divalent Metal Picrates by 18-Crown-6 Ether Derivatives into Benzene: A Refinement of Methods for Analyzing Extraction Equilibria. Int J Chem 2013; 5: 90-102. http://dx.doi.org/10.5539/ijc.v5n4p90
- [13] Kudo Y, Takeuchi S, Kobayashi Y, Katsuta S, Takeda Y. Potentiometric Determination of Ion-Pair Formation Constants for Cadmium, Calcium Salts, and Cadmium-18crown-6 Ether Derivative Complexes with a Sulfate Ion in Water. J Chem & Eng Data 2007; 52: 1747-1752. <u>http://dx.doi.org/10.1021/je700135j</u>
- [14] Kudo Y, Horiuchi N, Katsuta S, Takeda Y. Extraction of Cadmium Bromide and Picrate by 18-Crown-6 Ether into Various Less-polar Diluents: Analysis of Overall Extraction Equilibria Based on Their Component Equilibria with Formation of Their Ion Pair in Water. J Mol Liq 2013; 177: 257-266. <u>http://dx.doi.org/10.1016/i.molliq.2012.10.015</u>
- [15] Kudo Y, Takahashi Y, Numako C, Katsuta S. Extraction of Lead Picrate by 18-Crown-6 Ether into Various Diluents: Examples of Sub-Analysis of Overall Extraction Equilibrium Based on Component Equilibria. J Mol Liq 2014; 194: 121-129.

http://dx.doi.org/10.1016/j.molliq.2014.01.017

[16] Kudo Y. Potentiometric Determination of Ion-Pair Formation Constants of Crown Ether-Complex Ions with Some Pairing Anions in Water Using Commercial Ion-Selective Electrodes. Chap. 5, Electrochemistry ed Khalid MAA, In Tech-Open Access Publisher, Croatia 2013. http://dx.doi.org/10.5772/48206

- [17] Lide DR. Hand Book of Organic Solvents. CRC Press, Boca Raton FL 1995; p. 22.
- [18] Christian GD. Analytical Chemistry. Chaps. 7-9, John Wiley & Sons, New York NY 1994.
- [19] Kielland J. Individual Activity Coefficients of Ions in Aqueous Solutions. J Am Chem Soc 1937; 59: 1675-1678. <u>http://dx.doi.org/10.1021/ja01288a032</u>
- [20] Shanonn RD. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst 1976; A32: 751-767. http://dx.doi.org/10.1107/S0567739476001551
- [21] Horiba's trade catalog on Web site (in Japanese). For the Ca²⁺-se:http://www.horiba.com/jp/application/materialproperty-characterization/water-analysis/water-qualityelectrochemistry-instrumentation/electrodes-accessories/ionelectrodes/details/calcium-ion-electrode-8203-10c-9587/ for the Cd²⁺-se: http://www.horiba.com/jp/application/materialproperty-characterization/water-analysis/water-qualityelectrochemistry-instrumentation/electrodes-accessories/ionelectrodes/details/cadmium-ion-electrode-8007-10c-9515/
- [22] Takeda Y, Mochizuki U, Tanaka M, Katsuta S. Conductance Study of 1:1 19-Crown-6 Complexes with Various Mono- and

Received on 27-04-2016

Accepted on 19-05-2016

Published on 30-05-2016

© 2016 Kudo et al.; Licensee Lifescience Global.

DOI: http://dx.doi.org/10.6000/1929-5030.2016.05.02.2

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (<u>http://creativecommons.org/licenses/by-nc/3.0/</u>) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- Bivalent Metal Ions in Water. J Inc Phenom Macrocyclic Chem 1999; 33: 217-231. http://dx.doi.org/10.1023/A:1008099827420
- [23] Majer V, Štulík K. A Study of the Stability of Alkaline-Earth Metal Complexes with Fluoride and Chloride Ions at Various Temperatures by Potentiometry with Ion Selective Electrodes. Talanta 1982; 29: 145-148. http://dx.doi.org/10.1016/0039-9140(82)80039-8
- [24] Takeda Y, Ezaki T, Kudo Y, Matsuda H. Distribution Study on Electroneutral and Protonated Amino Acids between Water and Nitrobenzene. Determination of the Standard Ion-Transfer Potentials of Protonated Amino Acids. Bull Chem Soc Jpn 1995; 68: 787-790. http://dx.doi.org/10.1246/bcsj.68.787
- [25] Ramette RW, Fan G. Copper(II) Chloride Complex Equilibrium Constants. Inorg Chem 1983; 22: 3323-3326. http://dx.doi.org/10.1021/ic00164a029
- [26] Haight Jr GP, Peterson JR. Chloro Complexes of Lead(II). Inorg Chem 1965; 4: 1073-1075. <u>http://dx.doi.org/10.1021/ic50029a036</u>
- [27] Biggs IA, Parton HN, Robinson RA. The Constitution of the Lead Halides in Aqueous Solution. J Am Chem Soc 1955; 77: 5844-5848. <u>http://dx.doi.org/10.1021/ja01627a019</u>