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To the Mathematical Theory of the Temkin Adsorption Model 

Michael Vigdorowitsch1,*, Liudmila E. Tsygankova2 and Pavel N. Bernatsky2 

1Angara GmbH, In der Steele 2, 40599 Düsseldorf, Germany 
2Derzhavin State University, Internatsyonalnaja Str. 33, 392000 Tambov, Russian Federation 

Abstract: This study expands the mathematical theory of the Temkin adsorption model and demonstrates the way 
experimental data are to be additionally treated. A functional complement property of the Temkin isotherm has been 
studied as a particular case of the common theory of asymptotic complement. This property is shown to give rise to 
various analytical strategies to be employed for processing or interpretation of the experimental results, e.g. to perform 
mapping of data obtained in experiments onto a conjugated part of the true isotherm, to judge if presupposed energetic 
heterogeneity type of the surface really takes place, etc. Experimental data for adsorption of carbon monoxide on gold 
and of sodium oleate on steel with and without a magnetite coating have been extensively analysed. 

Keywords: Adsorption heat, isotherm, Temkin, energetic heterogeneity. 

INTRODUCTION 

The usefulness of the Temkin isotherm in both 
historical and modern research can scarcely be 
overestimated. In its simplified form 

! = !! −
!
!
− const + ! lg!" !!!      (1) 

(A stands for the amount of adsorbed hydrogen, p 
pressure of hydrogen in the gas phase; the notation 
exactly reproduces the origin [1]) it was discovered 
experimentally by A. Šlygin and A. Frumkin while 
determining the capacity of a platinum electrode in 
various electrolytes and became known first as the 
Šlygin-Frumkin isotherm. Just an incomplete list of its 
applications includes phenomena on iron and steels 
[2-5], zinc [6], gold, incl. nanoparticles [7], alumina and 
activated carbon [8], oxygenated multi-walled carbon 
nanotubes [9], hydrogen evolution reaction [10], 
sorption on clay-like minerals [11] and witnesses the 
highest actuality of the Temkin adsorption model in 
diverse fields of knowledge as, e.g., physics and 
chemistry of surfaces and interfaces, catalysis, 
corrosion, dissolution of metals, hydrogen evolution, 
properties of nanomaterials, environmental chemistry, 
pharmacology et cetera. 

The theoretical basics of this isotherm originated in 
[12] as M.I. Temkin performed first integrating over 
coverage in  

! = !(!)∙!
!!!(!)∙!  

!"!         (2) 

(p designates pressure in a gas phase or ionic activity 
or, provided a solution had a constant ionic power, 
concentration in a liquid phase, ! is  overall  surface 
coverage) given the law of heterogeneity ! ! = 
!!exp  (!/!"), along the line  
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! = !! + (1 − 2!)!,       (3) 

where σ is a half-width of the adsorption heat range, 
! ∈ [0, 1] , according to that the adsorption centres 
appeared to be ordered by their adsorption heat. This 
resulted in the well-known Temkin isotherm 

! = !
!
log !!!!!

!!!!!
         (4) 

where coefficients !! = !! exp ! exp !!
!"

 and 

!! = !!exp −! exp !!
!"

 correspond to the strongly 
and weakly adsorbing surface areas respectively, 
! = ln !!

!!
= !!

!"
   is a constant, a0p, where a0 is a 

dimensioned coefficient in the definitions of a+ and a–, 
represents in both numerator and denominator of Eq. 
(4) dimensionless pressure (activity or concentration). 
The case !! ≫ !! was defined by M. Temkin as that 
of “medium coverages” where the inequalities 

!!! ≪ 1 and !!! ≫ 1       (5) 

are valid. The former means that the weakly adsorbing 
areas are mainly vacant, and according to the latter, 
the strongly adsorbing areas are mainly occupied. 
Assumptions (5) result in a simplified form of Eq. (4)  

! = !
!
log !!!        (6) 

(cf. Eq. (1)) that is known to be especially well-liked by 
experimentalists for a straight line in semilogarithmic 
coordinates.  

The basics of a rigorous mathematical theory of the 
Temkin isotherm were worked out in [13] in the 
framework of a universal mathematical formalism for 
energetically heterogeneous surfaces. Employing the 
technique of Fourier-transformations, Temkin and 
Levich derived the function of distribution of adsorption 
centres on adsorption heat that is a constant within a 
given range of adsorption heats !! − !, !! + ! : 

! ! = !
!!

        (7) 

Integrated with the local Langmuir isotherm over the 
range of all possible adsorption heats 
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! = !(!)∙!
!!!(!)∙!  

!(!)!"!!!!
!!!!

,      (8) 

this is well-known [14] to reproduce Eq. (4). The 
summary of both works [12, 13] is well documented in 
[15]. 

The next contribution and generalization of the 
Temkin isotherm’s mathematical theory was 
undertaken in [16, 17] and called in [18] “the most 
complete and elegant mathematical investigation of 
Langmuir adsorption on surfaces characterized by an 
exponential energy distribution” 

! ! = !exp  (− !
!!
)       (9) 

In one of its parametrical limits (adsorption constant 
!! → +∞ ), while expanding the general solution 
represented by a hypergeometric function into an 
infinite series, one arrives in Eq. (4) again. 

Although there have appeared a number of works 
that revisit such issues of the Temkin adsorption model 
as its general interpretation (s., e.g., [7]), applicability 
fashion [19] and validation [20], those works that 
address its fundamental functional properties 
originated notably earlier. The aim of this paper is to 
establish one more functional property of the Temkin 
isotherm and adsorption model in general, that enables 
one to explore and to interpret experimental data in the 
framework of this adsorption model more extensively 
as well as to validate its applicability in every concrete 
case. 

ASYMPTOTIC COMPLEMENT PROPERTY OF THE 
TEMKIN ISOTHERM 

The reverse side of the methods [13, 16, 17] that 
advantageously suggest a generalized approach to 
consider a variety of heterogeneity types of surfaces, 
appears to represent its disadvantage. These don’t 
distinguish between individual functional properties of 
different distribution functions. Indeed, the distribution 
function (7) in the Temkin case (even energetic 
heterogeneity of a surface) is axially symmetrical 
whereas the distribution function (9) in the Freundlich 
case (exponential energetic heterogeneity) is not 
(Figure 1).  

 
Figure 1: Distribution functions related to even (solid line, Eq. 
(7)) and exponential (dashed curve, Eq. (9)) energetic 
heterogeneity of a surface. 

The general mathematical theory of what additional 
opportunities arise because of a distribution function’s 
symmetry was developed in [21] under the name 
asymptotic complement theorem for the class of 
symmetrical (symmetrisable) distribution functions. 
When applied to the Temkin isotherm, this appears to 
be the following. Substitution of Eq. (7) into Eq. (8) 
gives the expression 

!(!) = !"
!!

!
!!!! !"# !!

!"
! !
!"

! !
!"

 ,    (10) 

where ! = !!! exp
!!
!"

 is hereinafter the modified 

dimensionless pressure. The integrand !
!!!! !"# !!

 is a 

monotonous function reaching its upper value at ! = 0 
and tending to zero as ! → ∞. The integral is invariant 
relative to replacement ! → −!  (easy to check by 
means of transformation of the integration variable). 
Considering the following difference 

! ! = ∞ − ! !

=
!"
2!

!"

! !
!"

! !
!"

−
!"
2!

1

1 + 1
! exp −!

!"

! !
!"

! !
!"

= ⋯ 

and reducing both terms under the integral sign to a 
common denominator, one obtains 

… =
!"
2!

1
1 + ! exp !

!"

! !
!"

! !
!"

=
!"
2!

1
1 + ! exp −!

!"

! !
!"

! !
!"

= ! 1/!  

on account of the above-mentioned invariance. Since  

! ! = ∞ =
!"
2!

!"

! !
!"

! !
!"

= 1 

one obtains the following equality 

! ! + ! 1/! = ! ∞ = 1    (11) 

that represents an asymptotic complement property for 
the Temkin isotherm. It is valid for every q provided the 
Temkin adsorption model took place (can also be 
checked by a direct substitution of Eq. (4) into Eq. 
(11)).  

The asymptotic complement property (11) of the 
Temkin adsorption model defines the centrosymmetric 
point !∗ = 1  where coverage reads ! !∗ = ½  and 
that every point (q1, !!) located on the left or on the 
right of the centrosymmetric point is to be mapped into 
its symmetric point (q2, !!) located on the right or on 
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the left of the centrosymmetric point respectively. q1 
and q2 are interrelated as  

!! = 1/!!      (12) 

according to their definition due to Eq. (11). 

Which additional opportunities arise because of the 
asymptotic complement property shows the following 
analytical example. We find the asymptotical 1 
behaviour of the Temkin isotherm at big q: 

! ! → +∞ ~ !"
!!

log !!!/(!") 1 + !
!
!!!/(!") −

log !!!!/(!") 1 + !
!
!!/(!") … 

Expanding logarithms into terms and then into 
infinite series, we obtain 

⋯ =
!"
2!

2!
!"

+
1
!
!!

!
!" −

1
2!!

!!
!!
!" +⋯−

1
!
!
!
!" +

1
2!!

!
!!
!"

−⋯                                                                                                                   (13) 

= 1 −
!"
!

−1 !!!

!!!
sinh

!"
!"

!

!!!

 

In order to find ! ! → 0 , one needs to apply the 
asymptotic complement property (11) according to that 

! ! → 0 ~1 − ! ! → +∞ = 1 − ! !
! !→!

=

!"
!

!! !!!!!

!
sinh !"

!"
!
!!!     (14) 

The convergence radius of both expansions is 

                                                
1Symbol “~“ means hereinafter that the ratio of what is present on the left and 
on the right of “~” is equal to 1 in the limit considered, i.e. this symbol denotes 
an asymptotic approximation for the function on the left. 

! = exp   −!/(!") , i.e. the higher temperature and the 
narrower the surface heterogeneity range are, the 
greater the convergence radius is. Its least upper 
bound is reached in the centrosymmetric point: 
sup! = !∗ = 1. The hyperbolic harmonic components 
in Eq. (13) and (14) are presented in Figure 2. The 
asymptotic complement property provides mapping of 
each m-th harmonics in Figure 2a and 2b onto the 
harmonics with the same index in Figure 2c and 2d 
respectively. 

This means that upon determining in experiment the 
isotherm’s points at one side of the centrosymmetric 
point one may not need to continue experimental 
determination of the isotherm’s points at the opposite 
side of the centrosymmetric point since the asymptotic 
complement property (11) enables one to calculate 
them on the basis of the data determined first. 

For the reference purposes we note here, that the 
Freundlich isotherm is sure not to possess the 
asymptotic complement property. 

The Temkin isotherm obtains the following form in 
dimensionless units upon integrating in Eq. (10): 

! = !"
!!
log

!!!∙!"# !
!"

!!!∙!"# ! !
!"

     (15) 

Simple mathematical analysis shows that !(!) 
doesn’t have any inflection point in normal coordinates. 
It’s easy to check that its 2nd derivative appears to be 
zero only when ! = 0 , otherwise !!!!! < 0 . Another 
pattern takes place in semilogarithmic coordinates 
whose popularity in relation to the isotherm’s simplified 
form was already mentioned above (Eq. (6) and 
thereafter). The isotherm equation (15) reads then 

 
Figure 2: Hyperbolic harmonic components: a, c: !

!"
= 1 and b, d: !

!"
= 0,5. a, b: subtracted in Eq. (13); c, d. in Eq. (14). 
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! =
!"
2!

log
1 + exp !

!" + !

1 + exp − !
!" + !

 

where ! ≡ log  (!) . The condition !!!!! = 0  gives the 
unique solution !∗ = 0 i.e. the inflection point reads 
! = 1 and coincides with the centrosymmetric point !∗ 
(s. also [21] for more details). The isotherm curve in 
semilogarithmic coordinates on the left of !∗  is 
concave and on the right convex. The pressure in 
dimensional units that corresponds to the inflection 
point reads !∗ = !!!! exp − !!

!"
. At this point ! = 0.5. 

Thus, the necessary condition that the Temkin 
adsorption function is valid in any concrete case arises 
as follows: the isotherm curves must have one 
inflection point in semilogarithmic coordinates and no 
inflection point in normal coordinates. 

PRACTICAL CALCULATION OF CONJUGATED 
POINTS AND ENERGY CHARACTERISTICS OF A 
SURFACE 

Let two points !!!,!!!  and !!",!!"  be obtained 
in experiments. In order to map them in the sense of 
asymptotic complement property onto points !!",!!"  
and !!!,!!!  on dependence !(!) , one considers 
the following set of equations based on Eq. (15): 

!!! =
!
!!
log !!!!!!!"#  (!)

!!!!!!!"#  (!!)
    (16a) 

!!" =
!
!!
log !!!!!"!"#  (!)

!!!!!"!"#  (!!)
    (16b) 

where ! = !/(!") is dimensionless half-width of the 
whole adsorption heat range and ! = !

!
= !! exp

!!
!"

 
is the adsorption heat peak factor. One obtains easily 
from Eq. (16a) an explicit dependence of λ on α  

! = !!!"#  (!!!!!)
!"# !!!!!! ! !!"#(!)

!
!!!

    (17) 

and comes by means of a successive substitution into 
Eq. (16b) to the equation 

!!" =
!
!!
log

!!!!"!!!
∙ !!!!!!!!
!!!!!!!!!!!!

!!!!"!!!
!!!! !!!!!!!!

!!!!!!!!!!!!

    (18) 

whose solution represents the true value of ! giving 
rise to the energetic heterogeneity factor σ and to 
adsorption heat peak factor λ. Coordinates of points 
!!"  and !!!  conjugated with !!!  and !!" 
respectively can be calculated on the basis of 
equation2 

!!!!!! = !!! = !"#$%    (19a) 

                                                
2A relation of this kind as auxiliary one was first formulated [22] for the special 
case of lateral interactions between adsorbed particles (a Fowler-Guggenheim 
local isotherm) with a random surface topography and a constant energy 
distribution. 

that follows directly from Eq. (12). Consequently, for 
the centrosymmetric point in dimensional coordinates 
we have 

!∗ = 1/!     (19b) 

The symmetrical points are then to be calculated 
according to Eq. (11) as 

!!" = 1 − !!!     (20a) 

!!! = 1 − !!"     (20b) 

To further perform calculations of this kind on the 
basis of real experimental data, we employ the 
research results having been published before.  

DISCUSSION WITH APPLICATION TO 
EXPERIMENTAL DATA 

As it follows from the above-mentioned applications 
of the Temkin adsorption model, there are a huge 
amount of experimental data having been obtained by 
independent research teams and interpreted in its 
framework. The following two examples selected to 
cogently demonstrate applicability of the asymptotic 
complement property as a tool to more extensively 
explore experimental data than it was typically done in 
the Temkin case are related to the essentially different 
heterogeneous systems. One of them represents a 
classic model reaction for general understanding the 
gold catalysis [23] whereas another one is subject to a 
corrosion process with a huge number of influencing 
factors. 

Adsorption of Carbon Monoxide on Gold 

This is a highly relevant example related to 
intensive interpretation of the experimental results on 
the basis of the Temkin adsorption model (Figure 3) [7].  

 
Figure 3: Dependence of coverage of the 1% Au/TiO2 
real-world catalyst surface on pressure of CO (coefficient of 
determination !! = 0,9944). 

The following calculations have been performed. 
First, combinations of pairs of experimental points were 
to be chosen in order to calculate α on the basis of Eqs. 
(17) and (18). Upon statistical processing, averaged 
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out final value of α was used for calculation of the final 
value of λ according to Eq. (17). The calculated curve 
was then generated3 using the equation of type (16), 
the centrosymmetric and conjugated points were 
calculated according to Eqs. (19) and (20) respectively. 

Coverage in the centrosymmetric point calculated 
appeared to be equal to 0.5 as it follows from the 
theoretical representation above. Really, one can see 
that the experimental (yellow) and conjugated with 
them (green) points are being mapped onto each other 
referred to the centrosymmetric point (red). Since more 
points were obtained in the experiment on the left of the 
centrosymmetric point than on the right, their mapping 
onto the right-side part of the isotherm reveals the 
“missing” (i.e. capable of being recovered on the basis 
of the existing data) points (green) far in the 
high-pressure area. Provided the Temkin adsorption 
model remained valid in that area, they would belong to 
the true isotherm without the need to perform an 
extended experiment to determine them. 

That such a perfect fit of the experimental data with 
the Temkin adsorption model takes place is likely to be 
a sequence of that the blurring of a distribution function 
that is constant in theory of the Temkin adsorption 
model, is negligible. Needless is to check that there is 

                                                
3In terms of work [7], in the framework of the Heterogeneous Surface Case. 

no inflection of calculated isotherm in normal 
coordinates (compare with the next case where such a 
check has been performed). Summing up, we are to 
state that the experimental data [7] represent a 
canonical example of the Temkin adsorption model and 
provide a very clear presentation of the asymptotic 
complement property.  

Adsorption of Sodium Oleate on Steel with and 
without a Magnetite Coating 

This second example concerns a corrosion-related 
process. There was studied the adsorption of sodium 
oleate on both oxidized steel and steel with magnetite 
coating in a borax buffer with pH=7.4 and under natural 
aeration [24] (Figure 4). The magnetite coating was 
produced on the steel electrode in the ammonium 
nitrate solution with addition of ammonium persulfate 
(IFHANOKS-3) that, while compared to pure NH4NO3, 
enforces thickening and porosity of the coating. 

Questionable was which adsorption model should 
be used for interpretation of the curves. The Temkin 
adsorption model found itself among others to be 
considered. 

From the stand-point of the mathematical theory 
developed above, the fact that the curves experience 
inflection in normal coordinates (Figure 4a) and don’t 
do in semilogarithmic coordinates (Figure 4b) says for 

 

 
Figure 4: Dependence of surface coverage of steel electrode with and without magnetite coating on concentration of sodium 
oleate. a) semilogarithmic coordinates; b) normal coordinates. Data sets: 1. non-oxidized steel (6 experimental points); 2. steel 
with a magnetite coating (5 experimental points). 
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the Temkin isotherm and therefore witnesses [18] that 
tailing of the distribution of adsorption centres on 
adsorption heat that is constant in theory, is here 
minimal. In other words, its smoothing (compare to Eq. 
(7) as idealized case) in each of the areas !! ± ! is 
also minimal (effectively absent). The adsorption 
parameters α and λ have been calculated according to 
Eqs. (17) and (18). The sets of these parameters 
resulting from trial calculations for different 
combinations of points were statistically analysed. 
Those demonstrating the best fit with the experimental 
data have been chosen. 

We have calculated the centrosymmetric point (Eq. 
(19b)) and the conjugated points (Eqs. (19a) and (20)) 
as well as the continuous curves itself using Eq. (15). 
Thus, the dependencies of coverage on concentration 
have appeared to be prolonged beyond the 
concentration range in the experiment to the area of 
small concentrations, by means of a direct mapping of 
experimental points onto conjugated ones (green in 
Figure 4). 

CONCLUSIONS AND SUMMARY 

Both experiments related to adsorption (1) of 
carbon monoxide on gold and (2) of sodium oleate on 
steel (possibly with a magnetite coating) appear to 
provide a near-perfect illustration of the approach 
based on the asymptotic complement property to 
analysis of experimental data. That a higher error level 
is characteristic for the second experiment is likely to 
originate from a much more multifactor nature of the 
system having been studied. 

The theoretical results as well as the analysis of 
experimental data prove the necessary requirements 
that the Temkin adsorption model really takes place, to 
be ! = 0.5  in the centrosymmetric point and a 
one-to-one mapping of the isotherm’s parts located on 
the left and on the right of the centrosymmetric point 
onto one another. This may not be called a necessary 
and sufficient condition at the moment because in order 
to state this one has to prove that there is no other 
adsorption model the asymptotic complement in Eq. 
(11) would be compatible with (of course, provided the 
Langmuir kernel were valid on the “homotattic surfaces” 
[25]). However, since the number of examples having 
been studied so far and based on different distribution 
functions is limited, we cannot propose a 
counterexample that would refute such a hypothesis. 
The Gaussian case studied earlier [21] is certainly not 
such a counterexample since its asymptotic 
complement property represents a functional 
dependence on dispersion of the normal distribution as 
well as on temperature whereas the asymptotic 

complement property in the Temkin adsorption model 
is the absolute invariant. A symmetrically curtailed 
Gaussian is apparently not such a counterexample 
either because it inevitably inherits the temperature 
and dispersion dependence. 

While summing up, we can ascertain a variety of 
analytical strategies arise on the basis of the 
asymptotic complement property that are useful for 
interpretation of experimental data. Just some of them 
may include (i) verification of the behaviours of 
adsorption functions at ! → 0 and ! → ∞ that appear 
to be interrelated with one another in the framework of 
the Temkin adsorption model, (ii) given the overall 
asymptotic complement value that is invariant and 
equal to 1, one can map experimental data, (iii) upon 
determining a centrosymmetric point one can calculate 
the surface heterogeneity factor, (iv) having uncovered 
the Temkin adsorption model while studying the 
heterogeneous system, one can optimize/reduce 
amount of experimental data to be obtained. What is 
still missing can be easily restored either exactly by 
means of calculations or estimatively in the framework 
of a graphical analysis, (v) to check in general if the 
Temkin adsorption model (or an assumed type of the 
surface energetic non-uniformity) really takes place in a 
case under consideration.  

Finally, we have to state on the basis of the results 
delivered above that a stochastic blurring of functions 
of distribution of adsorption centres on adsorption heat 
seems to have a more complex origin than simply 
nobleness of a metal. 
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