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Abstract: This work presents a study of the influence of the molecular weight on the thermodynamic modeling of the 
viscosity of non-newtonian polymer solutions. The employed model is based on the absolute rate theory of Eyring and on 
the solution theory of McMillan-Mayer. The Soave-Redlich-Kwong equation of state was adopted for the calculation of 
the excess molar McMillan-Mayer free energy derived from the osmotic pressure of the solution. The model presents 
parameters that take account separately the different possibilities of interaction in the macromolecular environment. As 
the tertiary structure of a polymer molecule can be affected by applied shear stress, only the parameters related with the 
intramolecular interactions are dependent of the shear stress. The experimental rheological curves for different 
molecular weights of polyethylene glycol aqueous solutions have been measured at several concentrations, within the 
whole polymer solubility range, at 298.15 K and 0.1 MPa. The dependence on the molecular weight for all parameters of 
the model was analyzed and characterized. The dependence of the shear sensitive parameters on the shear stress was 
also studied. 

Keywords: Viscosity, rheology, thermodynamics, modeling, polymer solutions, polyethylene glycol. 

1. INTRODUCTION 

Knowledge of the viscosity of polymer solutions is 
fundamental in the design of processes and 

equipments in the chemical and pharmaceutical 
industry, in the oil extraction and production units and 
in the research of new products. With this aim, several 
approaches to describe the rheological behavior of 
polymer solutions have been proposed. 

The viscosity of non-newtonian solutions can be 
calculated by means of a continuum mechanistic 
approach [1,2], as for example, through the Rivlin-

Sawyers theory [2,3] and concepts such as Finger 
tensor [4] and Cauchy-Green tensor [5], leading to 
equations such as the Oldroyd-B and the (Kaye)-
Bernstein, Kearsley, Zapas – (K)-BKZ [6-8]. However, 
as the description of these models are very rigorous, 
they frequently contain a large number of parameters 

which are difficult or, in some cases, impossible to be 
determined by fitting the experimental viscosity data 
[9,10]. 
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A second approach for the modeling of the viscosity 
of a non-newtonian solution is to consider the 
molecular modeling. In the last 50 years, several 
dynamic theories have been proposed to this aim [9-
15]. These dynamic theories are based on the 
diffusion-convection Fokker-Planck equation, on the 

stochastic Langevin equation or on the Smoluchowski 
equation [9,15]. Because of the closure condition that 
appears in these models, different methodologies have 
been employed for breaking the equation hierarchy, 
leading to different types of constitutive theories [9] that 
can be applied to very dilute, semi dilute or entangled 

polymer solutions, according to the theory used. 
Despite the precise description of this approach, the 
complexity makes its use difficult in industrial and 
practical rheological applications. 

Another way to describe the rheological behavior of 
the non-newtonian solutions is through the 
phenomenological models [16,17]. Nevertheless, the 
close agreement between the calculated and the 

experimental results in these models, the equations 
and their parameters do not present any more 
fundamental justification. Moreover, the adjusted 
parameters, valid for a given solute and solvent, 
depend on the solution composition, temperature and 
pressure. These models are also restricted, in general, 

to the range of shear rate to which the model 
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parameters have been fitted. It should be stressed that, 
when using such a model, the region of its validity must 

be carefully obeyed. Therefore, by changing the 
system, we can modify completely the parameters and 
even the equation used in the rheological description. 

The great advantage of the models based on the 
absolute rate theory of Eyring [18-20] is to present a 
reasonably rigorous description of the polymer system 
under study, together with close agreement between 
the calculated and the experimental viscosity values 

due to their semi-empirical character. It should be 
remarked that recently the Eyring equation has been 
received a solid theoretical foundation from the non-
equilibrium thermodynamics [21]. 

On other hand, fundamentally it is known, due to the 
well-known Mark-Houwink equation [16,22,23], that the 
viscosity of a polymer solution and the molecular 
weight of the polymer are closely linked. Normally, 

increasing the polymer molecular weight, the solution 
viscosity also increases, because the capability of 
entanglements between polymeric chains increases, 
making the polymer more aggregated. 

Curiously, the dependences between the polymer 
molecular weight and the parameters of the models 
above mentioned have not been investigated so well. 
More frequently, the dependence between the polymer 

molecular weight and the solution viscosity is more 
focused than the dependence with the individual 
parameters. 

Exceptions to this, particularly with polyethylene 
glycol solutions, are the works of Ninni et al. [24] and of 
González-Tello et al. [25]. In the former [24], the 
authors employed the Kumar equation to describe the 
kinematic viscosity of newtonian polyethylene glycol 
solutions. They report that both Kumar parameters 
show an exponential increase with the polymer 
molecular weight. In the González-Tello et al. work 
[25], the authors also proposed a model to describe the 
dynamic viscosity of newtonian polyethylene glycol 
solutions. This model has four adjustable parameters 
and all of them present a linear profile with the polymer 
molecular weight. We have not found works where the 
parameters of non-newtonian models were studied in 
function of the polymer molecular weight. 

In a previous paper [26], the authors presented a 
model based on the absolute rate theory of Eyring [18-
20] and on the solution theory of McMillan-Mayer [27-

31] for calculating the rheological behavior of non-
newtonian polymer solutions. This model presents an 

explicit shear stress dependence of the viscosity of the 
solution and was applied to aqueous solutions of just 

one polyethylene glycol (PEG) molecular weight. In the 
present paper the authors examine the application of 
this model to aqueous solutions of four different PEGs, 
in order to investigate the effect of the size of the 
polymeric chain on the model parameters. The 
dependence of the parameters on the shear is also 
studied. 

We should remark that one could imagine, 

incidentally, that it is not more than a mere gigantic 
curve fitting problem, but it is not true, because all the 
parameters of the alleged fitting problem have a 
fundamental justification for their existence and for their 
form presented elsewhere [26]. More than that, the 
influence of the increase and decrease of the polymer 

molecular weight and of the increase and decrease of 
the applied shear stress are carefully analyzed and 
discussed in terms of the possible interactions between 
different parts of the same polymer chain, between 
separated polymer chains or between the polymer 
chain and the solvent molecules. Thus, the affirmation 

that the present work is simply a fitting problem is a 
naïf understanding of the essence of this work. 

The organization of the rest of this article is as 
follows. In Sect. 2 some aspects of the experimental 
procedure are given. Sect. 3 presents the results, the 
analyses of the data and the discussion. Finally, in 
Sect. 4 our conclusions are summarized. In the 
Appendix all the details about the experimental 

considerations and carful are detailed and explained. In 
the Supplementary Material all the experimental and 
calculated results used in this study are listed and 
presented as tables or spreadsheets. 

2. EXPERIMENTAL SECTION 

In this work, we have studied four different PEGs in 
aqueous solutions: PEG3000, PEG6000, PEG10000 
and PEG20000. All PEGs were supplied by Merck. The 
manufacturer provided molecular weight distribution 

ranges and melting point ranges are [2700 – 3300] 
g/mol and [50 – 56]°C (PEG3000); [5000 – 7000] g/mol 
and [56 – 61]°C (PEG6000); [9000 – 12500] g/mol and 
[58 – 63]°C (PEG10000), and about 20000 g/mol and 
[58 – 63]°C (PEG20000). The polymers were used 
without further purification and were stored in a 
desiccator over silica gel and under vacuum. 

The rheological measurements were performed in a 

ThermoHaake RheoStress 1 rheometer (Karlshuhe, 
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Germany) with a Z34 titanium concentric cylinder rotor. 
The rheometer was coupled with a ThermoHaake 

Phoenix P1-CP25 thermostatic bath to control the 
temperature within 0.01 K. All the measurements taken 
in this work were purely rotational (not oscillatory), 
obtained by means of the Controlled Stress (CS) mode, 
in order to give a larger range of accessible shear 
stresses, and with step increments. 

In order to procedure the minimization of the model 
and to study the influence of the PEG molecular weight 

on the model parameters, measurements of rheological 
behavior of the solutions were needed. Therefore, we 
prepared nine different solutions of PEG3000 in the 
concentrations of 0.3767, 0.4268, 0.4853, 0.5116, 
0.5425, 0.5715, 0.6012, 0.6306, and 0.6598 g/cm3; 
eleven solutions of PEG6000 in the concentrations of 

0.3156, 0.3721, 0.4282, 0.4566, 0.4854, 0.5136, 
0.5433, 0.5722, 0.6011, 0.6310, and 0.6606 g/cm3; ten 
solutions of PEG10000 in the following concentrations: 
0.2030, 0.2633, 0.3189, 0.3739, 0.4288, 0.4849, 
0.5124, 0.5415, 0.5716, and 0.6030 g/cm3; and twelve 
solutions of PEG20000 in the concentrations of 0.1607, 

0.2101, 0.2611, 0.3153, 0.3716, 0.4282, 0.4579, 
0.4869, 0.5149, 0.5446, 0.5714, and 0.6032 g/cm3. The 
solutions were prepared by mass using a digital 
balance (Chyo YMC, model JK-180, Kyoto, Japan), 
with an uncertainty of ±0.1 mg, in airtight stoppered 
bottles. The water employed in the preparation of the 

solutions was filtered and distilled in a Tecnal TE-178 
quartz distiller. The electric conductivity of the water did 
not exceed 5.0 μS/cm. The estimated error in the mass 
fraction is < 1.0x10-4. In order to convert the polymer 
weight fractions to the polymer molar concentrations 
necessary for modeling purposes, a volumetric study of 

these systems was performed and is presented 
elsewhere [32,33]. 

The viscosity average molecular weight [32,34] of 
each PEG was also determined. For the PEG3000 it 
was found to be 3565 g/mol; for the PEG6000 it was 
6892 g/mol; in the case of the PEG10000 it was 12065 
g/mol, and for the PEG20000 the value found was 
25907 g/mol. These values of average molecular 

weight were the values of molecular weights employed 
in the model calculation procedure. 

3. RESULTS AND DISCUSSION 

The viscosity values under very low shear stress 
conditions were not considered. In these cases, the 
uncertainty due to the low electric current, and to the 
low torque of the drive-cup motor, combined with the 

low rotation speeds make accurate measurements very 
difficult. Furthermore, some measurements show that 

in these conditions of low shear stress, there is a light 
increase in the viscosity with the increase of the shear 
stress. Recently, some authors have attributed this 
behavior to a change in the structure of the solution 
related to the shear [35,36]. However, it can be shown 
that these transitions can be explained by the boundary 

layer that is not fully developed [37-39] in the entire 
gap, i.e., the boundary condition of null azimuthal 
velocity in the resolution of the Navier-Stokes equation 
to the Couette flow problem is satisfied for a radius 
smaller than the external one for this rotational velocity 
and for this system. Thus, the smaller thickening of the 

flowing layer makes the viscosity presents an apparent 
maximum value. 

At high shear, some solutions have presented a 
linear increase in the viscosity with increase in the 
shear stress, configuring a clear reversible shear 
thickening (reversible dilatancy) behavior. In recent 
years, some authors have verified this kind of behavior 
in other systems [40]. The reasons for the shear 

thickening behavior at high shear conditions are still 
unclear, and various explanations have been proposed 
to explain the phenomenon. One them is the order-
disorder mechanism proposed by Hoffmann [41-43]. 
Another possibility is the formation of a non-equilibrium, 
quaternary, self-organized microstructure that develops 

under strong flows, denoted as “hydroclusters” [44,45]. 
Accordingly, the shear thickening behavior is the result 
of the formation of a stiffer inner structure due to the 
entanglements of polymer coils and the increase in the 
intermolecular interactions, as the shear rate rises. 

In this study, the reversible shear thickening was 
observed for the solutions with a concentration of 
0.5716 and 0.6030 g/cm3 for PEG10000, and also for 

those with a concentration of 0.4282, 0.4579, 0.4869, 
0.5149, 0.5446, and 0.5714 g/cm3 for PEG20000. In all 
cases where the reversible shear thickening was 
observed, the values beyond the pseudoplastic region 
were neglected, that is, the values were modeled only 
until the beginning of the reversible shear thickening. 

Therefore, the shear stress range for each viscosity 
measurement depends on the solution concentration 

and on the molecular weight of the PEGs studied. Due 
to the fact that the ratio (and its square) between the 
inner and outer cylinder is greater than the null ratio 
between the outer and inner angular velocity, and that 
this is a necessary but insufficient condition for the flow 
instabilities to occur [46], special care was taken to 
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inspect and to suppress any possible bifurcations. We 
should remark that despite the observation, no 

bifurcations, except those that appear after the onset of 
reversible shear thickening, were observed. No drag or 
edge effects, or viscous dissipation, were observed 
either in our measurements, as described in the 
Appendix together all the carful and experimental 
considerations that must be accounted in the 
realization of the measurements. 

In Figure 1 it is possible to observe a pseudoplastic 

behavior for a 0.5124 g/cm3 PEG10000 solution. This 
viscosity curve is analogous for all PEGs and for all 
polymer concentrations, that is, for all systems 
investigated the pseudoplastic pattern was observed. 
This profile was analogous to the one reported 
previously [26]. The experimental data shown in the 

figures is also presented in the Supplementary 
Material. 

 

Figure 1: Viscosity curve of 0.5124 g/cm3 PEG10000 
aqueous solutions. 

We have made a linear regression of a polynomial 
at the experimental data in order to get the viscosity-
shear stress data to be used in the model parameter 
fitting [26]. 

A total of one thousand four hundred and eighteen 
(1418) diagrams of viscosity versus polymer 
concentration have been correlated by the model 

previously developed by the authors [26], for different 
shear stress, at 298.15 K and 0.1 MPa. We would 
remark that the deviations between the calculated 
values and the experimental viscosity values were 

smaller than the experimental error (~ up to 10%) 
[26,32,47-49]. As mentioned before, this model is 

based on the absolute rate theory of Eyring [18-20], 
and on the solution theory of McMillan-Mayer [27-29] 
by means of the so-called osmotic equilibrium 
formulation [30,31]. According to this model, the 
expression for calculation of the viscosity of a polymer 
solution is given as follows [26,32]: 

= 1 + 1AoZc
sinh B / c 1+ A1c + A2c

2
+…( )

sinh B c( )

1 bZc

Z bZc

1+ bZc

1+ bc

a
bRT

exp Z 1( )

        (1) 

where  and 1 are the dynamic viscosity of the 
solution and of the pure solvent, respectively; c is the 

polymer molar concentration; Z is the so-called osmotic 
compressibility factor or Bjerrum´s osmotic coefficient 
and is calculated by [17,26,31,32,50] 

Z =
1

1 bc

ac

RT 1+ bc( )
          (2) 

The a, b, Ao, A1, A2,… are the adjustable 
parameters of the model. It is important to observe that 

the both first parameters are shear independent, and 
come from the Soave-Redlich-Kwong equation of state 
used in the model [26,32]. Ao is another shear 
independent parameter and comes from the definition 
of an ideal polymer solution [26,32]. The parameters 
(A1, A2, A3, A4,…) were called hydrodynamic 

parameters and are sensitive to the applied shear 
stress. These latter parameters come from the 
observation that even in very low molar concentrations 
polymer solutions can exhibit accentuated non-
newtonian behavior of flow [51], and were defined by 
the assumption that [26,32] 
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where cid is the molar concentration of an ideal polymer 
solution. 

In the study of the different polyethylene glycol 
solutions, it was verified that for aqueous solutions of 
PEG3000 and PEG6000, the addition of orders higher 
than the second order, in the power series in the 
argument of hyperbolic sine, did not present any 

improvement in the accuracy of the calculated values 
of viscosity. For aqueous solutions of PEG10000, a 
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cubic term was needed to accomplish close agreement 
between the calculated and experimental viscosity 

values. In the case of aqueous solutions of PEG20000, 
close agreement was obtained only with the inclusion 
of a fourth order term in the series expansion. 

Due to the knowledge of these dependences, the 
model can also be used to predict the viscosity values 
of PEG aqueous solutions in the range of molecular 
weights and shear stresses of this study, i.e., between 
3000 up to 20000 g/mol and between 10.0 up to 853.0 
Pa, at 298.15 K and 0.1 MPa. 

As mentioned before, the average molecular weight 

of each PEG was considered as being the viscosity 
average molecular weight. No consideration was made 
relative to the polydispersity. 

The adjustment of the model parameters was 
performed by the simplex-type algorithm of the Nelder 
and Mead [52,53], where the objective function, Fobj, 
employed in the determination of the adjustable 
parameters of the model was the same one used 

previously [26,32], that is, the sum of the quadratic 
deviations between the calculated and experimental 
results for each shear stress value: 

 

F
obj

=
calc,i exp,i( )

2

i=1

ND

          (4) 

where ND is the number of the viscosity experimental 

data available for each shear stress, calc is the 
viscosity calculated by the model and exp is the 
experimental viscosity, naturally, both for each shear 
stress value. 

To turn the minimization procedure a consistent 
system, at least five input experimental data (five 
concentration-viscosity pairs, for a given shear stress 
value) were needed for the parameter fitting of the 

viscosity of aqueous solutions of PEG3000 and of 
aqueous solutions of PEG6000. For aqueous solutions 
of PEG10000, a minimum set of six input experimental 
data were informed. For aqueous solutions of 
PEG20000 a minimum of seven concentration-viscosity 
pairs of experimental data were lacked. Taking this into 

account, the computing operational shear stress 
ranges were from 22.0 Pa up to 100.0 Pa for PEG3000 
aqueous solutions; from 10.0 Pa up to 246.0 Pa for 
PEG6000 aqueous solutions; from 10.0 Pa up to 367.0 
Pa for PEG10000, and from 10.0 Pa up to 853.0 Pa for 
PEG20000 aqueous solutions. It must be remarked 

that the lower limit in the stress range for investigations 

of aqueous solutions of PEG3000 is higher, due to the 
fact that for shear stress values lower than 22.0 Pa, 

bifurcations were observed during the measurements, 
as mentioned before. The higher shear stress limits are 
different in the four molecular weights studied, due to 
the fact that the maximum rotation speed sustained by 
the rheometer (1200 rpm) is achieved at different shear 
stresses, increasing with the concentration and 
molecular weight of PEG. 

The agreement between the calculated and the 

experimental results can be seen in Figure 2 and in 
Tables 1 to 4, for all four PEGs, at 80.0 Pa of shear 
stress. 

 

Figure 2: Experimental and calculated viscosity values at 
shear stress of 80.0 Pa, for different studied PEG aqueous 
solutions. Experimental data: ( ) PEG3000; ( ) PEG6000; 
( ) PEG10000; and ( ) PEG20000. The solid lines 
represent the calculated values. 

Table 1: Experimental, Calculated Viscosity Values and 
Absolute Relative Deviations for a Shear Stress 
of 80.0 Pa of PEG3000 Aqueous Solutions 

c (M) exp (mPa.s) calc (mPa.s) ARD (%) 

0.17052 53.65 55.421 3.31 

0.18083 68.44 67.880 0.82 

0.19049 82.39 82.302 0.11 

0.20038 100.62 100.483 0.14 

0.21021 122.61 122.786 0.14 

0.21993 149.86 149.853 0.01 

MRSD (%) 1.40 
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Table 2: Experimental, Calculated Viscosity Values and 
Absolute Relative Deviations for a Shear Stress 
of 80.0 Pa of PEG6000 Aqueous Solutions 

c (M) exp (mPa.s) calc (mPa.s) ARD (%) 

0.07137 72.60 73.733 1.56 

0.07610 90.29 92.731 2.70 

0.08090 113.98 116.983 2.64 

0.08560 139.89 146.542 4.75 

0.09055 180.42 184.902 2.49 

0.09537 220.46 229.445 4.08 

0.10018 278.46 279.198 0.26 

0.10516 341.37 330.071 3.31 

0.11010 424.43 426.015 0.37 

MRSD (%) 2.85 

 

Table 3: Experimental, Calculated Viscosity Values and 
Absolute Relative Deviations for a Shear Stress 
of 80.0 Pa of PEG10000 Aqueous Solutions 

c (M) exp (mPa.s) calc (mPa.s) ARD (%) 

0.03189 60.08 62.123 3.41 

0.03739 102.49 102.258 0.23 

0.04289 161.52 166.251 2.93 

0.04849 275.04 268.644 2.33 

0.05124 332.74 337.323 1.38 

0.05415 428.66 427.010 0.39 

0.05716 554.96 555.820 0.15 

0.06031 725.39 715.450 1.37 

MRSD (%) 1.92 

 

Table 4: Experimental, Calculated Viscosity Values and 
Absolute Relative Deviations for a Shear Stress 
of 80.0 Pa of PEG20000 Aqueous Solutions 

c (M) exp (mPa.s) calc (mPa.s) ARD (%) 

0.01305 91.84 96.909 5.52 

0.01576 174.06 170.996 1.76 

0.01858 319.81 309.838 3.12 

0.02141 599.33 565.009 5.73 

0.02290 751.48 773.452 2.92 

0.02434 1064.89 1044.071 1.95 

0.02574 1342.02 1383.366 3.08 

0.02857 2388.90 2358.299 1.28 

MRSD (%) 3.53 

To evaluate the agreement between the calculated 
and the experimental viscosities, we employed the 

absolute relative deviations, ARD. The mean relative 
standard deviation (MRSD) represents the global 
deviation for a given shear stress value, i.e., for all 
concentrations of each PEG solution in a given shear 
stress value. Finally, we use also the overall MRSD 
( MRSD ), that is the average of all MRSD over all shear 
stress values. These deviations are thus defined by: 

ARD( )
c,

=
calc,i exp,i

exp,i

          (5) 

by 

MRSD( ) =
1

ND

calc,i exp,i

exp,i

2

i=1

ND

       (6), 

and by 

 

MRSD =
1

N
MRSD

i

i=1

N

         (7). 

where N  is the number of shear stresses used in the 

calculation. As previously stated, all the experimental, 
calculated and respective deviation values are 
presented in the Supplementary Material. 

For PEG3000 solutions, the MRSD values varied 
from 0.2% to 1.5%, with the overall MRSD value equal 
to 0.72%. For PEG6000, the MRSD values were in the 
range of 2% and 7%, and the overall MRSD was equal 
to 4.37%. For PEG10000, the MRSD ranged from 1% 

to 4.5%, with the overall equal to 1.93%, and for 
PEG20000 solutions, the MRSD range was from 3% to 
7.5%, and the  MRSD  was 3.35%. 

The three model parameters that are shear stress-
independent (a, b and Ao) are presented in Table 5. 

They can be represented in terms of the PEG 
molecular weight according to the following exponential 
curve, obtained by non-linear regression and 
represented in Figures 3 and 4, 

a, b or A
o
= D

o
+ D

1
exp

D
2

M
         (8) 

where M  is the viscosity average molecular weight of 
the polymer. The coefficients D1, D2 and D3 are 
presented in Table 6. 
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Figure 3: Dependence of the shear-independent parameter a 
on the PEG molecular weight. 

 

 

Figure 4: Dependence of the shear-independent parameter 
Ao on the PEG molecular weight. 

The parameter Ao characterizes the infinite dilution 
polymer-solvent interaction. We can verify by the 

Figure 5 that this parameter is related to the intrinsic 
viscosity of the polymers [34]. It is a reasonable 
conclusion due to the fact that the Ao parameter came 

from an expression of the ideal dilute solution [26,32], 
which is in essence the Huggins expression [54-56]. In 
the case that the ideal solution is dilute, but not so 
dilute to assure that the Huggins linear expression is 
valid, more terms in the Huggins expression are 
necessary [23]. 

Table 6: Coefficients of the Exponential Dependence of 
the Shear Stress Invariant Parameters with the 
Viscosity Average Molecular Weight 

 Do
† 

D1
† 

D2x10
5‡

 

Ao (cm3/g) -195812.8868 176935.1911 9.3957 

a (Pa/cm6.mol2) -54.4156 94.0552 -15.5703 

b (cm3/g) -21543.2812 27214.2975 -5.3002 

†The units of Do and D1 are cm3/g for Ao and b. For the Do and D1 of a, the units 
are Pa/cm6.mol2. 
‡The unit of D2 is g/mol for Ao, a and b. 

 

 

Figure 5: Relationship between the model parameter Ao and 
the intrinsic viscosity of the different PEG molecular weights 
[34]. The solid line represents the linear regression of Ao in 
relation to [ ]. 

Table 5: Shear Independent Parameters of the Model 

 Ao (cm
3
/g) a (Pa/cm

6
.mol

2
) b (cm

3
/g) 

PEG3000 49361.87 -1.81796 1585.43 

PEG6000 145745.43 -18.24053 -3969.38 

PEG10000 352530.56 -43.94145 -6333.46 

PEG20000 1822360.46 -51.47299 -14789.27 
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The behavior of the shear dependent hydrodynamic 
parameters (A1, A2, A3 and A4) with the shear stress 
obey 

 

A
1
, A

2
, A

3
or A

4
= P

n

n

n=0

2

         (9) 

for all four PEG aqueous solutions investigated in this 
work and is presented in Figure 6 for A1. The 
coefficients of these polynomials are presented in 

Table 7, where Po, P1 and P2 are, respectively, the 

zeroth, first and second term of the polynomial. We 
observe that A1 and A3 are parabolas with positive 

concavity, while A2 and A4 are parabolas with negative 
ones. Thus, these results show that the power series in 
the argument of the hyperbolic sines are alternated. It 
should also be remarked that the amplitude of variation 
of the hydrodynamic parameters increases with the 
molecular weight of the PEG. This may be explained by 

the sense that the larger polymeric chains are more 
sensitive to the deformations in their tertiary structure 
than the shorter ones. 

The variations of these parameters with molecular 
weight are represented by exponential-type curve, 
illustrated in Figure 7 for A2, for a fixed shear stress 
value of 100.0 Pa. The coefficients of these curves will 
vary from one shear stress value to another, because 

these parameters are shear variants, but the general 
form is the same. 

Another possibility is to express the double 
dependence of the hydrodynamic parameters (A1, A2, 
A3 and A4) on the polymer molecular weight and on the 
shear stress by the surfaces represented in direct 
trihedral, as in Figure 8 for A2. The surfaces for A1, A2 
and A3 were obtained the triangulation method of 

Renka-Cline [57], and the surface for A4 was built by 
non-linear regression. 

4. CONCLUSIONS 

In this work we have applied the previously 
proposed model [26] for four PEGs with different 

 

Figure 6: Dependence of the A1 parameter on the shear 
stress for different PEG aqueous solutions: ( ) PEG3000; 
( ) PEG6000; ( ) PEG10000; and ( ) PEG20000. 

Table 7: Coefficients of the Polynomial Dependence of A1, A2, A3 and A4 with the Shear Stress Obtained by Linear 
Regression 

Polymer Hydrodynamic Parameter Po
†
 P1x10

3‡
 P2x10

5*
 

A1x10-3 (cm3/mol) -6.7928894 -0.0843995 2.3463074 
PEG3000 

A2x10-6 (cm6/mol2) 11.947598 0.14150139 -10.104646 

A1x10-3 (cm3/mol) -16.242964 0.37192784 0.23779184 
PEG6000 

A2x10-6 (cm6/mol2) 65.293325 -3.3695802 -2.1436266 

A1x10-3 (cm3/mol) -33.051398 3.43350975 1.6335223 

A2x10-6 (cm6/mol2) 276.32836 -120.41114 -54.685713 PEG10000 

A3x10-9 (cm9/mol3) -52.283706 1055.1465 457.87486 

A1x10-3 (cm3/mol) -75.338791 5.6813195 0.19495063 

A2x10-6 (cm6/mol2) 1522.0496 -396.50361 -12.028613 

A3x10-9 (cm9/mol3) 9019.6486 6696.9142 205.07140 
PEG20000 

A4x10-12 (cm12/mol4) -421691.70 3806.8233 -133.44709 

†The units of Po are cm3/mol for A1; cm6/mol2 for A2; cm9/mol3 for A3, and cm12/mol4 for A4. 
‡The units of P1 are cm3/Pa.mol for A1; cm6/Pa.mol2 for A2; cm9/Pa.mol3 for A3, and cm12/Pa.mol4 for A4. 
*The units of P2 are cm3/Pa2.mol for A1; cm6/Pa2.mol2 for A2; cm9/Pa2.mol3 for A3, and cm12/Pa2.mol4 for A4. 



Thermodynamic Modeling of the Rheological Behavior of PEG Journal of Applied Solution Chemistry and Modeling, 2013 Volume 2, No. 1      9 

molecular weights in order to verify the influence of the 
chain size in the parameters of the referred model. 

 

Figure 7: Dependence of the A2 parameter on the PEG 
molecular weight, at a shear stress of 100.0 Pa. The solid line 
represents the non-linear regression. 

 

 

Figure 8: Surface representing the double dependence of the 
A2 parameter on the PEG molecular weight and on the shear 
stress. 

To perform this study, we had to measure the 
viscosity in function of the shear stress for each 
molecular weight. In the achievement of the rheological 
measurements, special care was taken to avoid other 
phenomena that could represent interferences in the 
quality of the results, such as viscous dissipation, 
turbulence, slippage and others. 

The agreements between the calculated viscosity 

values and the experimental ones were closer than the 

experimental error, with different mean relative 
standard deviations being obtained for each shear 

stress value and PEG molecular weight. These results 
show that the model is adequate to describe the 
simultaneous dependence of the viscosity of the PEG 
aqueous solutions with different molecular weights, on 
shear stress and on concentration, at 298.15 K and 0.1 
MPa. 

The dependences of the model parameters on the 
molecular weight of PEG were also found and 

analyzed. The values of the shear-independent 
parameters (a, b and Ao) were shown to vary 
exponentially with the PEG molecular weight. The other 
parameters (A1, A2, A3 and A4) also present exponential 
profiles for their dependence on the molecular weight, 
but quadratic profiles for their dependence on the shear 
stress. 
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APPENDIX. EXPERIMENTAL CONCERNS 

In the measurement of the viscosity-shear stress 
data, a Searle-type rheometer ThermoHaake 
RheoStress 1 (Karlshuhe, Germany) was used. The 
rheometer works with a Z34 titanium concentric 
cylinder rotor (DIN 53019/ISO 3219). This rotor is 
suggested [46,47] for viscosity measurements in the 

range of 0.7 mPa.s to 2400 Pa.s. As the rotor is made 
of titanium, it is lighter than one of steel, and thus its 
moment of inertia is smaller [47] (1,540x10-5 kg.m2). 
Consequently, the error of the measurements in the 
low values of shear stress or shear strain is lower. The 
cone angle at the underside of the rotor is 120±1° 

(plane angle) or 4 /3 sr (solid angle). The torque and 
speed constants [58] of this rotor are 9080 Pa/N.m 
(±0.2%) and 12,326 s-1/rad.s-1 (±0.5%), respectively. 
The distance between the top of the cone up to the 
external cylinder is fixed at 7.2 mm. The inner cylinder 
radius is 17.000 mm and the outer one is 18.428 mm, 

so the gap between the walls is 1.428 mm. The height 
of the rotor is 51 mm. As this is a Searle-type 
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rheometer, the ratio between the outer and inner 
angular velocity is null, once the external cylinder is 

stationary. A thermostatic bath ThermoHaake Phoenix 
P1-CP25 (Karlshuhe, Germany) (DIN 58966) was 
employed to control the temperature within 0.01 K. The 
thermal fluid used was distilled water. 

To obtain the desired viscosity values we adopted 
the following experimental procedure. For each 
solution, the initial value of the shear stress was fixed 
at 0.1 Pa. Subsequently, a step run was adopted up to 

the value of 908.0 Pa. The higher limiting value 
corresponds to the maximum torque (100 mN.m) given 
by the drive-cup motor with the employed rotor. The 
data acquisition was programmed with one hundred 
different shear stress values, uniformly distributed 
within the shear stress range (0.1 Pa up to 908.0 Pa). 

In the case of low viscosity solutions (dilute solutions), 
the dumping of the rotor movement is low, and thus the 
maximum limit of rotation speed (1200 rpm) is 
achieved. In these situations, we considered as the 
superior limit a shear stress value slightly higher than 
the last one measured, and established two or three 

acquisitions by shear stress unitary step, i.e., two or 
three acquisitions to each pascal of increased stress. 

To each shear stress value, the measurements 
were repeated five times to guarantee that the 
reproducibility of the acquisitions was better than 1%. If 
a deviation in a certain acquisition was greater than 
1%, the data were neglected and a new measurement 
was taken. Those results were averaged, giving us the 

viscosity value of a given shear stress. For the 
measurements with the different shear stress, a delay 
of 20 s was imposed before the beginning of the first 
acquisition, to warrant the system stability. 

As already mentioned, all the experimental data 
used in the calculations is presented in the 
Supplementary Material. 

The maximum value of Reynolds number (Re) 
observed was 22.16. That is to say, the ratio between 
the inertial forces and the viscous force in our 

measurements is much lower than the critical value 
[59] (circa 2100) for the transition zone between the 
laminar regime and turbulent one. Thus, we have not 
observed any conditions of Reynolds turbulence in the 
measurements. 

Concerning the Taylor instabilities, the largest 
Taylor number (Ta) obtained was 12.76, i.e., the ratio 
of the Coriolis force to the viscous force is much lower 

than the critical value of 3400 required for the formation 
of the Taylor vortex [22]. Therefore, we have not 

observed any Taylor turbulences in the measurements 
either. In addition, the highest Weissenberg number 
(Wi), i.e., the ratio of the elastic forces to the viscous 
forces, was only 5.84x10-3. As this value is 
considerable lower than the critical value [22] of 30, we 
can assume that no elastic bifurcation could occur. 

Another problem that may arise in the rheological 
measurements is that due to the viscous dissipation. In 

our measurements, however, the highest Brinkman 
number (Br) found was 1.53x10-3, which means that 
the ratio of the amount of generated heat to the amount 
of heat removed from the material [60] through thermal 
conduction was negligible, or in other words, the ratio 
between the heat generated by viscous dissipation and 

the conduction heat transfer is negligible, and thus the 
viscous dissipation is not observable [61]. 

Besides this, we should also comment on the end 
effects (edge effects). The end effects arise from the 
fact that the rotor is not infinitely long. Accordingly, it 
presents limits, edges, corners and angles. One 
method of accounting for this is through the theoretical 
approach of Roscoe [62], where a correction is made 

by an effective increase in cylinder height produced by 
the presence of the end effect. This correction, for our 
measurements, was estimated at 1.553 mm, i.e., less 
than 3% of the height of the rotor, and it should be 
expected to compensate this by the cone shape in the 
underside of the rotor [63-64]. 

Another approach to account for the end effect was 
proposed by Wein et al. [65], Wein, Ve e  and 

Tov igre ko [66], Ve e  [67] and Wein [68]. They have 
shown that the edge effects can be computed by the 
concept of pseudosimilarity in the cL coefficient through 
the slip index. As reported [68], the slippage decrease 
on the cL value in a multi-region description for a Z40 
type geometry is around 1.6%. This coefficient for our 
measurements was negligible. 

Relating to this, another phenomenon that we 

cannot disregard is the possibility that slippage occurs 
between the solid surface of the rotor and a fluid in 
flow. 

Despite this still being a nebulous research field, 
where there is no generally recognized approach for 
their computation, there are some techniques reported 
in the literature for handling Couette rheometric data 
when wall slip (true or apparent) is present. The 
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pioneer work of Mooney [69] requires experimental 
data from three different Couette geometries that need 

to present a fixed set of relationships between their 
inner and outer radii. Yoshimura and Prud´homme [70] 
presented a method where only two different 
geometries are required, but with the same ratio 
between the radii. Kilja ski [71] described a method 
that also only requires data from two geometries, but 

with no restrictions on their radius ratios. Yeow et al. 
[72] proposed a method that can be used without 
restrictions on the combinations of the radii to resolve 
the inverse problem, in which the equation that relates 
the rotational speed to the wall shear stresses in 
Couette viscometers is treated as an integral equation 

of the first kind for the unknown shear stress versus 
shear rate function and the wall shear stress versus 
slip velocity function. Therefore, a method based on the 
Tikhonov regularization [73], was used to obtain 
approximate solutions of these two material property 
functions simultaneously. Ancey [74] employed a 

wavelet-vagulette decomposition to solve the referred 
inverse problem. Actually, Wein e Tovchigrechko [75] 
proposed a method, also with no restrictions on the 
values of the radii, based on local filtering of the 
primary angular velocity-torque data, that gives a 
nonparametric representation of the shear rate and slip 
velocity in function of the shear stress. 

None of the tested PEG solutions displays a wall 

slip effect (AWS) [76]. As the sensitivity of AWS 
viscometry to slip effects depends on the sensor gap 
thickness, the non-observation of slippage must be 
expected due to the rather large gap thicknesses of the 
rotor employed (1.428 mm for Z34). For detecting very 
weak AWS effects, it would be necessary to work with 

much lower gap thicknesses; something in the order of 
0.2 mm [76]. Due to no apparent wall slip effect is 
observed, no particle migration could have occurred 
(centrifugal or side effects). 

NOTATION 

a = equation of state parameter (Pa.L2/mol2) 

Ao = adjustable parameter of the model (L/mol) 

A1 = first coefficient in the power series 
expansion (L/mol) 

A2 = second coefficient in the power series 
expansion (L2/mol2) 

A3 = third coefficient in the power series 
expansion (L3/mol3) 

A4 = fourth coefficient in the power series 
expansion (L4/mol4) 

ARD = absolute relative deviation 

b = equation of state parameter (L/mol) 

c = solution concentration (mol/L) 

cid = ideal solution concentration (mol/L) 

Fobj = objective function 

MRSD = mean relative standard deviation 

M  = viscosity average molecular weight 

ND = number of data points generated by 
means of the polynomial regression 

N  = number of shear stress values 

Pn = adjustable polynomial coefficients 

R = gas constant (8.314472 J/mol.K) 

T = absolute solution temperature (K) 

Z = osmotic compressibility factor 

Greek Symbols 

 = viscosity of the solution (mPa.s) 

1 = viscosity of the pure solvent (mPa.s) 

i,calc = viscosity calculated by the model (mPa.s) 

i,exp = experimental viscosity (obtained by means of 
polynomial regression of the data from the 
rheological curve (mPa.s)) 

Subscripts 

calc = calculated value 

exp = polynomial regressed value 

i = solute species 

id = ideal solution 

SUPPLEMENTAL MATERIALS 

The supplemental Tables containing the complete 
set of all experimental and calculated viscosity values 

for the four PEGs studied can be downloaded from the 
journal website along with the article. 
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