Potentiometric and Thermodynamic Studies of Some Azosulfoxine Derivatives and Their Metal Complexes

Authors

  • A.A. El-Bindary Damietta University, Faculty of Science
  • A.Z. El-Sonbati University of Damietta
  • M.A. Diab University of Damietta
  • A.M. Barakat University of Damietta

DOI:

https://doi.org/10.6000/1929-5030.2013.02.03.4

Keywords:

Azosulfoxines, potentiometry, stability constants and thermodynamics

Abstract

The proton-ligand dissociation constants of some azosulfoxine derivatives and metal-ligand stability constants of their complexes with the metal ions (Mn2+, Co2+, Ni2+ and Cu2+) have been determined potentiometrically in 0.1 M KCl and 50 % (by volume) DMF–water mixture at (298, 308 and 318) K. The stability constants of the formed complexes increases in the order Mn2+, Co2+, Ni2+ and Cu2+. The effect of temperature was studied and the corresponding thermodynamic parameters (ΔG, ΔH and ΔS) were derived and discussed. The dissociation process is non-spontaneous, endothermic and entropically unfavourable. The formation of the metal complexes has been found to be spontaneous, endothermic and entropically favourable.

Author Biographies

A.A. El-Bindary, Damietta University, Faculty of Science

Chemistry

A.Z. El-Sonbati, University of Damietta

Department of Chemistry, Faculty of Science

M.A. Diab, University of Damietta

Department of Chemistry, Faculty of Science

A.M. Barakat, University of Damietta

Department of Chemistry, Faculty of Science

References


[1] Butler MS. The Role of Natural Product Chemistry in Drug Discovery. J Nat Prod 2004; 67: 2141-53. http://dx.doi.org/10.1021/np040106y
[2] Kurihara M, Hirooka A, Kume S, Sugimoto M, Nishihara H. Redox-conjugated reversible isomerization of ferrocenylazobenzene with a single green light. J Am Chem Soc 2002; 124: 8800-10. http://dx.doi.org/10.1021/ja026625+
[3] Yamaguchi K, Kume S, Namiki K, Murata M, Tamia N, Nishihara H. UV-Vis, NMR, and time-Resolved spectroscopy analysis of photoisomerization behavior of three- and sixazobenzene-bound tris(bipyridine) cobalt complexes. Inorg Chem 2005; 44: 9056-67. http://dx.doi.org/10.1021/ic0513538
[4] Mubarak AT, El-Assiery SA. Supramolecular structures and properties models of macrocyclic polymer complexes. Appl Organomet Chem 2004; 18: 343-52. http://dx.doi.org/10.1002/aoc.645
[5] Otsuki J, Omokawa N, Yoshiba K, Yoshiba I, Akasaka T, Suenobu T, et al. Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with azobis(2,2'- bipyridine)s. Inorg Chem 2003; 42: 3057-66. http://dx.doi.org/10.1021/ic026040g
[6] Aziz MS, El-Sonbati AZ, Hilali AS. D.C. conduction phenomenon of some rhodanine azo complexes. Chem Pap 2002; 56: 305-308.
[7] Li X, Jiao Y, Li S. The syntheses, properties and application of new conducting polymers. Eur Polym J 1991; 27: 1345-51. http://dx.doi.org/10.1016/0014-3057(91)90233-E
[8] Misra TK, Das D, Sinha C. Chemistry of azoimidazoles: synthesis, spectral characterization and redox properties of bis(N(1)-alkyl-2-(arylazo)imidazole) copper(I) and silver(I) complexes. Polyhedron 1997; 16: 4163-70. http://dx.doi.org/10.1016/S0277-5387(97)00127-7
[9] El-Bindary AA, El-Sonbati AZ, Diab MA, Abd El-Kader MK. Potentiometric and Thermodynamic Studies of Some Schiffbase Derivatives of 4-Aminoantipyrine and Their Metal Complexes. J Chem 2013; ID 682186.
[10] Mubarak AT, Al-Shihri AS, Nassef HM, El-Bindary AA. Potentiometric and thermodynamic studies of vanillin and its metal complexes. J Chem Eng Data 2010; 55: 5539-42. http://dx.doi.org/10.1021/je100266u
[11] Mubarak AT, El-Bindary AA. Potentiometric and thermodynamic studies of 4-(1H-indol-3-yl)butanoic acid and its metal complexes. J Chem Eng Data 2010; 55: 5543-46. http://dx.doi.org/10.1021/je100267s
[12] Al-Sarawy AA, El-Bindary AA, El-Sonbati AZ, Mokpel MM. Potentiometric and thermodynamic studies of azosulfonamide drugs. Polish J Chem 2006; 80: 289-95.
[13] El-Ghamaz NA, El-Mallah HM, El-Sonbati AZ, Diab MA, ElBindary AA, Barakat AM. Optical properties studies on metalligand bonding of novel quinoline azodyes thin films. Solid State Sci 2013; 22: 56-64. http://dx.doi.org/10.1016/j.solidstatesciences.2013.05.005
[14] Diab MA, El-Sonbati AZ, El-Bindary AA, Barakat AM. Supramolecular spectral studies on metal-ligand bonding of novel quinoline azodyes. Spectrochim Acta Part A 2013; 116: 428-39. http://dx.doi.org/10.1016/j.saa.2013.07.053
[15] Jeffery GH, Bassett J, Mendham J, Deney RC, Vogel’s textbook of quantitative chemical analysis. 5th ed. Longman: London 1989.
[16] Bates RG, Paabo M, Robinson RA. Interpretation of pH measurements in alcohol-water solvents. J Phys Chem 1963; 67: 1833-38. http://dx.doi.org/10.1021/j100803a022
[17] Irving HM, Miles MG, Pettit LD. A Study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal Chim Acta 1967; 38: 475-88. http://dx.doi.org/10.1016/S0003-2670(01)80616-4
[18] Irving H, Rossotti HS. The Calculation of formation curves of metal complexes from pH titration curves in mixed solvents. J Chem Soc 1954; 2904-10. http://dx.doi.org/10.1039/jr9540002904
[19] Farkas E, Csoka H. Solution equilibrium studies on metal complexes of 2,3-dihydroxy-phenylalanine-hydroxamic acid (Dopaha) and models: Catecholate versus hydroxamate coordination in iron(III)-, aluminium(III)- and molybdenum(VI)-Dopaha complexes. J Inorg Biochem 2002; 89: 219-26. http://dx.doi.org/10.1016/S0162-0134(02)00379-3
[20] Omar MM, Mohamed GG. Potentiometric, spectroscopic and thermal studies on the metal chelates of 1-(2- thiazolylazo)-2-naphthalenol. Spectrochim Acta Part A 2005; 61: 929-36. http://dx.doi.org/10.1016/j.saa.2004.05.040
[21] Irving H, Rossotti HS. Methods for computing successive stability constants from experimental formation curves. J Chem Soc 1953; 3397-405. http://dx.doi.org/10.1039/jr9530003397
[22] Rossotti FJC, Rossotti HS. Graphical methods for determining equilibrium constants. I. Systems of mononuclear complexes. Acta Chem Scand 1955; 9: 1166- 76. http://dx.doi.org/10.3891/acta.chem.scand.09-1166
[23] Beck MT, Nagybal I. Chemistry of complex equilibrium. Wiley: New York 1990.
[24] Khalil MM, Radalla AM, Mohamed AG. Potentiometric investigation on complexation of divalent transition metal ions with some zwitterionic buffers and triazoles. J Chem Eng Data 2009; 54: 3261-72. http://dx.doi.org/10.1021/je9002459
[25] Sanyal P, Sengupta GP. Potentiometric studies of complexformation of some trivalent rare-earths with p,p’- bromosulphonosalicylidene anil. J Ind Chem Soc 1990; 67: 342-46.
[26] Sridhar S, Kulanthaipandi P, Thillaiarasu P, Thanikachalam V, Manikandan G. Protonating and chelating efficiencies of some biologically important thiocarbonohydrazides in 60 % (v/v) ethanol-water systems by potentiometric and spectrophotometric methods. World J Chem 2009; 4: 133-40.
[27] Athawale VD, Lele V. Stability constants and thermodynamic parameters of complexes of lanthanide ions and (±)-norvaline. Chem Eng Data 1996; 41: 1015-19. http://dx.doi.org/10.1021/je950306z
[28] Athawale VD, Nerkar SS. Stability constants of complexes of divalent and rare earth metals with substituted salicynals. Monatsh Chem 2000; 131: 267-76. http://dx.doi.org/10.1007/s007060070102
[29] Ibañez GA, Escandar GM. Complexation of cobalt(II), nickel(II) and zinc(II) ions with mono and binucleating azo compounds: A potentiometric and spectroscopic study in aqueous solution. Polyhedron 1998; 17: 4433-41. http://dx.doi.org/10.1016/S0277-5387(98)00249-6
[30] Malik WU, Tuli GD, Madan RD. Selected topics in inorganic chemistry. 3rd ed: Chand S & Company LTD, New Delhi 1984.
[31] Harlly FR, Burgess RM, Alcock RM. Solution equilibria. Ellis Harwood: Chichester 1980; p. 257.
[32] Orgel LE. An introduction to transition metal chemistry ligand field theory. Methuen; London 1966; p. 255.
[33] Bebot-Bringaud A, Dange C, Fauconnier N, Gerard C. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. J Inorg Biochem 1999; 75: 71-78. http://dx.doi.org/10.1016/S0162-0134(99)00041-0
[34] Gaber M, Al-Shihry SS, El-Bindary AA. Potentiometric and thermodynamic studies of 2-mercapto-5-(1- hydroxynaphthylide amino)-1,3,4-thiadiazole and its metal complexes. J Therm Anal Calorim 2005; 82: 63-68. http://dx.doi.org/10.1007/s10973-005-0842-z
[35] Mubarak AT, El-Sonbati AZ, El-Bindary AA. Potentiometric and conductometric studies on the complexes of some transition metals with rhodanine azosulfonamide derivatives. XI. Chem Pap 2004; 58: 320-23.

Downloads

Published

2013-08-31

How to Cite

El-Bindary, A., El-Sonbati, A., Diab, M., & Barakat, A. (2013). Potentiometric and Thermodynamic Studies of Some Azosulfoxine Derivatives and Their Metal Complexes. Journal of Applied Solution Chemistry and Modeling, 2(3), 191–196. https://doi.org/10.6000/1929-5030.2013.02.03.4

Issue

Section

General Articles