Substituent Effects on the Activation Parameter Changes for the Aminolysis in the Bimolecular Nucleophilic Reactions in Solution

Authors

  • Vladislav M. Vlasov N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

DOI:

https://doi.org/10.6000/1929-5030.2014.03.02.6

Keywords:

Aminolysis in solution, nucleophilic reactions, activation parameters, reaction mechanism.

Abstract

Variation of the activation parameters for the aminolysis in the SN2, acyl-transfer, SNAr and AdN reactions offers an additive mechanistic tool for the studies of these reactions in solution. This approach uses the substituent effects on the benzene and pyridine rings to the variation of the activation parameters, ΔX (X = H, S, G), in the above reactions in the frameworks of the Hammett - like equations in order to evaluate the resultant δΔXreaction constants. The single linear dependences of the internal enthalpy constants δΔHint on the δΔG and the Hammett Ï constants show that the substituent effects in the leaving and nonleaving groups and nucleophiles on the mechanistic features in aminolysis of bimolecular nucleophilic reactions are governed by the magnitude of δΔHint when one of the steps of the process is the single rate-determining step.

References


[1] Kirk and Othmer Encyclopedia of Chemical Technology. 5th ed. New York: Wiley 2007; 18: p.524, 682 (see also references therein).
[2] Lawrence SA, Ed. Amines: Synthesis, Properties and Application. Cambridge: Cambridge University 2004.
[3] Smith MB, March J. March’s Advanced Organic Chemistry 6th ed. New York: Wiley; 2007.
[4] Carey FA, Sundbery RJ. Advanced Organic Chemistry, Part A: Structure and Mechanisms. New York : Springer 2007.
[5] Williams A. Concerted Organic and Bio-organic Mechanisms. Boca Raton: CRC Press; 2000.
[6] Shaik SS, Schlegel HB, Wolfe S. Theoretical Aspects of Physical Organic Chemistry. New York: Wiley; 1992.
[7] Pross A. Theoretical and Physical Principles of Organic Reactivity. New York: Wiley; 1995.
[8] Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry. Sausalito: University Science Books; 2006.
[9] Lee I. Characterization of transition state. Chem Soc Rev 1990; 19: 317-33. http://dx.doi.org/10.1039/cs9901900317
[10] Lee I, Sung DD. Theoretical and physical aspects. Curr Org Chem 2004; 8: 557-67.
[11] Castro EA Kinetics and mechanisms. Chem Rev 1999; 99: 3505-24.
[12] Bennet AJ, Brown RS. Physical organic chemistry. In: Sinnott M, Ed. Comprehensive biological catalysis. New York: Academic Press 1998; vol. 1, p. 293 -326.
[13] Adler M, Adler S, Boche G. Tetrahedral intermediates. J Phys Org Chem 2005; 18: 193-209. http://dx.doi.org/10.1002/poc.807
[14] Terrier F. Modern nucleophilic aromatic substitution. Weinheim: Wiley-VCH Publishers; 2013. http://dx.doi.org/10.1002/9783527656141
[15] Buncel E, Dust JM, Terrier F. Rationalizing the regioselectivity. Chem Rev 1995; 95: 2261- 80. http://dx.doi.org/10.1021/cr00039a001
[16] Vlasov VM. Nucleophilic substitution. Russ Chem Rev 2003; 72: 681-703. http://dx.doi.org/10.1070/RC2003v072n08ABEH000809
[17] Ji P, Atherton J, Page MI. Organic reactivity. Org Biomol Chem 2012; 10: 5732-39. http://dx.doi.org/10.1039/c2ob25064k
[18] Bernasconi CF, Rappoport Z. Recent advances. Acc Chem Res 2009; 42: 993-1003. http://dx.doi.org/10.1021/ar900048q
[19] Bernasconi CF. Nucleophilic addition. Tetrahedron 1989; 45: 4017-4090. http://dx.doi.org/10.1016/S0040-4020(01)81304-1
[20] Lee I. Secondary kinetic isotope effects. Chem Soc Rev 1995; 24: 223-29. http://dx.doi.org/10.1039/cs9952400223
[21] Hengge AC. Isotope effects. Acc Chem Res 2002; 35: 105- 112. http://dx.doi.org/10.1021/ar000143q
[22] Simmons EM, Hartwig JF. On the interpretation of deuterium kinetic isotope effects. Angew Chem Int Ed 2012; 51: 3066- 72. http://dx.doi.org/10.1002/anie.201107334
[23] Leffler JE, Grunwald E. Rates and equilibria of organic reaction. New York, London: Wiley; 1963.
[24] Hammett LP. Physical organic chemistry, reaction rates, equilibria and mechanisms. New York: McGraw Hill; 1970.
[25] Johnson CD. The Hammett Equation. Cambridge: Cambridge University Press; 1973.
[26] Williams A. Free energy relationships in organic and bioorganic chemistry. Cambridge: The Royal Society of Chemistry; 2003.
[27] Ammal SC, Mishima M, Yamataka H. Linear free energy relationship. J Org Chem 2003; 68: 7772-78. http://dx.doi.org/10.1021/jo034971j
[28] Itoh S, Yamataka H. Dynamics effect. Chem Eur J 2011; 17: 1230-37. http://dx.doi.org/10.1002/chem.201001926
[29] Itoh S, Yoshimura N, Sato M, Yamataka H. Computational study. J Org Chem 2011; 76: 8294-99. http://dx.doi.org/10.1021/jo201485y
[30] Vlasov VM. Energetics of bimolecular nucleophilic reactions in solution. Russ Chem Rev 2006; 75: 765-96. http://dx.doi.org/10.1070/RC2006v075n09ABEH003614
[31] Vlasov VM. Towards mechanisms. J Phys Org Chem 2012; 25: 296-308. http://dx.doi.org/10.1002/poc.1912
[32] Vlasov VM. Effects of substituents. New J Chem 2009; 33: 501-6. http://dx.doi.org/10.1039/b808115h
[33] Vlasov VM. Effects of substituents. J Phys Org Chem 2010; 23: 468-76.
[34] Vlasov VM. Substituent effects. New J Chem 2010; 34: 1408- 16. http://dx.doi.org/10.1039/c0nj00058b
[35] Vlasov VM. Substituent effects. New J Chem 2010; 34: 2962- 70. http://dx.doi.org/10.1039/c0nj00419g
[36] Vlasov, V. M. Substituent effects. Russ J Org Chem 2013; 49: 391-97. http://dx.doi.org/10.1134/S1070428013030135
[37] Hepler LG. Effects of substituents. J Am Chem Soc 1963; 85: 3089- 92. http://dx.doi.org/10.1021/ja00903a008
[38] Hepler LG. Thermodynamic analysis. Can J Chem 1971; 49: 2803-07. http://dx.doi.org/10.1139/v71-466
[39] Ji P, Atherton J, Page MI. Liquid ammonia. J Org Chem 2011; 76: 1425-35. http://dx.doi.org/10.1021/jo102173k
[40] Oh HK, Yang JH, Sung DD, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 2000; 101-05. http://dx.doi.org/10.1039/a906639j
[41] Oh HK, Kim TS, Lee HW, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 2002; 282-86. http://dx.doi.org/10.1039/b108021k
[42] Oh HK, Kim IK, Lee HW, Lee I. Kinetics and mechanism. J Org Chem 2004; 69: 3806-10. http://dx.doi.org/10.1021/jo034370s
[43] Oh HK, Kim IK, Sung DD, Lee I. Kinetics and mechanism. Org Biomol Chem 2004; 2: 1213-16.
[44] Oh HK, Lee YH, Lee I. Kinetics and mechanism. Int J Chem Kinet 2000; 32: 131-5. http://dx.doi.org/10.1002/(SICI)1097- 4601(2000)32:33.0.CO;2-C
[45] Oh HK, Park JE, Sung DD, Lee I. Nucleophilic substitution. J Org Chem 2004; 69: 3150-53. http://dx.doi.org/10.1021/jo049845+
[46] Koh HJ, Kim SI, Lee BC, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 1996; 1353-57. http://dx.doi.org/10.1039/p29960001353
[47] Oh HK, Yang JH, Cho IH, Lee HW, Lee I. Kinetics and mechanism. Int J Chem Kinet 2000; 32: 485-90. http://dx.doi.org/10.1002/1097-4601(2000)32:83.0.CO;2-X
[48] Koh HJ, Shin CH, Lee HW, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 1998; 1329-32. http://dx.doi.org/10.1039/a801540f
[49] Lee HW, Yun Y-S, Lee B-S, Koh HJ, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 2000; 2302-05. http://dx.doi.org/10.1039/b002610g
[50] Koh HJ, Kim SK, Lee HW, Lee I. Structure – reactivity. J Chem Soc Perkin Trans 2 2001; 1753-57.
[51] Oh HK, Yang JH, Lee HW, Lee I. Kinetics and mechanism. Bull Korean Chem Soc 1999; 20: 1418-20.
[52] Oh HK, Kim SK, Lee I. Nucleophilic substitution. Bull Korean Chem Soc 1999; 20: 1017-20.
[53] Koh HJ, Han KL, Lee HW, Lee I. Kinetics and mechanism. J Org Chem 2000; 65: 4706-11. http://dx.doi.org/10.1021/jo000411y
[54] Mancini PME, Martinez RD, Vottero LR, Nudelman NS. Solvent effects. J Chem Soc Perkin Trans 2 1984; 1133- 38. http://dx.doi.org/10.1039/p29840001133
[55] Mancini PME, Martinez RD, Vottero LR, Nudelman NS. Solvent effects. J Chem Soc Perkin Trans 2 1987; 951-54.
[56] Crampton MR, Emokpae TA, Isanbor C. The effects of ring substituents. Eur J Org Chem 2007; 1378- 83. http://dx.doi.org/10.1002/ejoc.200600968
[57] Isanbor C, Emokpae TA Nucleophilic heteroaromatic substitution. Int. J. Chem. Kinet 2008; 40:125-35. http://dx.doi.org/10.1002/kin.20297
[58] Akinyele, E. T.; Onyido, I. J. Chem. Soc., Perkin Trans. 2 1988, 1859.
[59] Ji P, Atherton J, Page MI. The kinetics and mechanisms. J Org Chem 2011; 76: 3286-95. http://dx.doi.org/10.1021/jo200170z
[60] Um I–H, Im I–H, Kang J–S, Bursey SS, Dust JM. Mechanistic assessment. J Org Chem 2012; 77: 9738-46. http://dx.doi.org/10.1021/jo301862b
[61] Um I–H, Min S–W, Dust JM. Choice of solvent. J Org Chem 2007; 72: 8797-8803. http://dx.doi.org/10.1021/jo701549h
[62] Stegelmann C, Andreasen A, Campbell CT. Degree of rate control. J Am Chem Soc 2009; 131: 8077-82. http://dx.doi.org/10.1021/ja9000097
[63] Kozuch S, Martin JML. The rate-determining step. ChemPhysChem 2011; 12: 1413-18. http://dx.doi.org/10.1002/cphc.201100137
[64] Castro EA, Santander CL. Nonlinear Brønsted-type plot. J Org Chem 1985; 50: 3595-600. http://dx.doi.org/10.1021/jo00219a029
[65] Hansch C, Leo A, Taft RW. A Survey of Hammett substituent. Chem Rev 1991; 91: 165-95. http://dx.doi.org/10.1021/cr00002a004
[66] Ruff F. Reaction constants. J Mol Des 2004; 3: 474-98.
[67] El Seoud OA, Ferreira M, Rodrigues WA, Ruasse M-F. Kinetics and mechanisms. J Phys Org Chem 2005; 18: 173- 82.
[68] Liu L, Guo QX. Isokinetic relationship.Chem Rev 2001; 101: 673-95. http://dx.doi.org/10.1021/cr990416z
[69] Perez-Benito JF. Some tentative explanations. Monatsh Chem 2013; 144: 49-58. http://dx.doi.org/10.1007/s00706-012-0842-1
[70] Exner O. Entropy – enthalpy compensation. Chem Commun 2000; 1655-6. http://dx.doi.org/10.1039/b002758h
[71] Linert W. Mechanistic and structural investigations. Chem Soc Rev 1994; 23: 429-38. http://dx.doi.org/10.1039/cs9942300429
[72] Cornish-Bowden A. Ethalpy – entropy compensation J Biosci 2002; 27: 121-6. http://dx.doi.org/10.1007/BF02703768
[73] Starikov EB, Nordén B. Enthalpy – entropy compensation. J Phys Chem B 2007; 111: 14431-35. http://dx.doi.org/10.1021/jp075784i
[74] Starikov EB. Entropy is anthropomorphic. Monatsh Chem 2013; 144: 97-102. http://dx.doi.org/10.1007/s00706-012-0837-y
[75] Starikov EB. Valid entropy-enthalpy compensation. J Appl Solution Chem Model 2013; 2: 240-45.
[76] Exner O. The enthalpy – entropy relationship. Prog Phys Org Chem 1973; 10: 411-82.
[77] Castro EA, Valdivia JL. Linear free-energy relationship. J Org Chem 1986; 51: 1668-72. http://dx.doi.org/10.1021/jo00360a007
[78] Castro EA, Vivanco M, Aguayo R, Santos JG. Kinetics and mechanism. J Org Chem 2004; 69: 5399-404. http://dx.doi.org/10.1021/jo049260f
[79] Castro EA, Aguayo R, Bessolo J, Santos JG. Kinetics and mechanism. J Org Chem 2005; 70: 3530-36. http://dx.doi.org/10.1021/jo050119w
[80] Castro EA, Aguayo R, Bessolo J, Santos JG. Kinetics and mechanism. J Phys Org Chem 2006;19: 555-61. http://dx.doi.org/10.1002/poc.1055
[81] Castro EA, Acua M, Soto C, Trujillo C, Vàsquez B, Santos JG. Kinetics and mechanism. J Phys Org Chem 2008; 21: 816-22. http://dx.doi.org/10.1002/poc.1399
[82] Castro EA, Bessolo J, Aguayo R, Santos JG. Kinetic investigation. J Org Chem 2003; 68: 8157-61. http://dx.doi.org/10.1021/jo0348120
[83] Castro EA, Aguayo R, Bessolo J, Santos JG. Kinetics and mechanism. J Org Chem 2005; 70: 7788-91. http://dx.doi.org/10.1021/jo051052f
[84] Castro EA, Aliaga M, Campodónico PR, Cepeda M, Contreras R, Santos JG. Experimental and theoretical studies. J Org Chem 2009; 74: 9173-79. http://dx.doi.org/10.1021/jo902005y
[85] Castro EA, Millán D, Aguayo R, Campodónico PR, Santos JG. Reactions of aryl acetates. Int J Chem Kinet 2011; 43: 687-93. http://dx.doi.org/10.1002/kin.20598
[86] Millán D, Santos JG, Castro EA. Kinetic study. J Phys Org Chem 2012; 25: 989-93. http://dx.doi.org/10.1002/poc.2988
[87] Castro EA, Aliaga ME, Gazitúa M, Santos JG. The nucleofuge in the pyridinolysis. J Phys Org Chem 2012; 25: 994-97. http://dx.doi.org/10.1002/poc.2989
[88] Castro EA, Ramos M, Santos JG. Concerted pyridinolysis. J Org Chem 2009; 74: 6374-77. http://dx.doi.org/10.1021/jo901137f
[89] Um I–H, Min J–S, Ahn J–A, Hahn H–J. Effect of acyl substituents. J Org Chem 2000; 65: 5659-63. http://dx.doi.org/10.1021/jo000482x
[90] Um I–H, Kim K–H, Park H–R, Fujio M, Tsuno Y. Effects of amine nature. J Org Chem 2004; 69: 3937-42. http://dx.doi.org/10.1021/jo049694a
[91] Um I–H, Lee J–Y, Lee HW, Nagano Y, Fujio M, Tsuno Y. Effect of o-methyl group. J Org Chem 2005; 70: 4980-87. http://dx.doi.org/10.1021/jo050172k
[92] Um I–H, Lee J–Y, Ko S–H, Bae S–K. Aminolysis of Ysubstituted phenyl X-substituted benzoates. J Org Chem 2006; 71: 5800-03. http://dx.doi.org/10.1021/jo0606958
[93] Um I–H, Jeon S–E, Seok J–A. Aminolysis of 2,4- dinitrophenyl. Chem Eur J 2006; 12: 1237-43. http://dx.doi.org/10.1002/chem.200500647
[94] Um I–H, Lee J–Y, Fujio M, Tsuno Y. Structure – reactivity correlations. Org Biomol Chem 2006; 4: 2979-85. http://dx.doi.org/10.1039/b607194e
[95] Um I–H, Bae AR. Electronic nature. J Org Chem 2012; 77: 5781-87. http://dx.doi.org/10.1021/jo300961y
[96] Um I–H, Baek M–H, Han H–J. Effect of amine nature. Bull Korean Chem Soc 2003; 24: 1245-50.
[97] Um I–H, Hwang S–J, Baek M–H, Park EJ. Modification of both the electrophilic center. J Org Chem 2006; 71: 9191-97. http://dx.doi.org/10.1021/jo061682x
[98] Yew KH, Koh HY, Lee HW, Lee I. Nucleophilic substitution. J Chem Soc Perkin Trans 2 1995; 2263-68. http://dx.doi.org/10.1039/p29950002263
[99] Koh HJ, Lee J-W, Lee HW, Lee I. Kinetics and mechanism. Can J Chem 1998; 76: 710-16. http://dx.doi.org/10.1139/v98-038
[100] Oh HK, Kim SK, Cho IH, Lee HW, Lee I. Kinetics and mechanism. J Chem Soc Perkin Trans 2 2000; 2306-10. http://dx.doi.org/10.1039/b002842h
[101] Oh HK, Ha JS, Sung DD, Lee I. Aminolysis of aryl chlorothionoformates. J Org Chem 2004; 69: 8219-23. http://dx.doi.org/10.1021/jo0487247
[102] Oh HK, Park JE, Sung DD, Lee I. Kinetics and mechanism.. J Org Chem 2004; 69: 9285-88. http://dx.doi.org/10.1021/jo0484676
[103] Oh HK, Oh JY, Sung DD, Lee I. Aminolysis of aryl N-ethyl thionocarbamates. J Org Chem 2005; 70: 5624-29. http://dx.doi.org/10.1021/jo050606b
[104] Oh HK, Jin YC, Sung DD, Lee I. Kinetics and mechanism. Org Biomol Chem 2005; 3:1240-44. http://dx.doi.org/10.1039/b500251f
[105] Lee I, Lee HW, Yu Y–K. Kinetics and mechanism. Bull Korean Chem Soc 2003; 24: 993-98.
[106] Koh HJ, Han KI, Lee HW, Lee I. Kinetics and mechanism. J Org Chem 1998; 63: 9834- 39. http://dx.doi.org/10.1021/jo9814905
[107] Koh HJ, Han KL, Lee I. Nucleophilic substitution. J Org Chem 1999; 64: 4783-89. http://dx.doi.org/10.1021/jo990115p
[108] Oh HK, Ku MH, Lee HW, Lee I. Kinetics and mechanism. J Org Chem 2002; 67: 8995-98. http://dx.doi.org/10.1021/jo0264269
[109] Koh HJ, Kang S-J, Kim CJ, Lee HW, Lee I. Kinetics and mechanism. Bull Korean Chem Soc 2003; 24: 925-30. http://dx.doi.org/10.5012/bkcs.2003.24.7.925
[110] Bernasconi CF, Michoff MEZ, de Rossi RH, Granados AM. Kinetics of the Reactions. J Org Chem 2007; 72: 1285-93. http://dx.doi.org/10.1021/jo062138r
[111] Bernasconi CF, Pérez-Lorenzo M, Codding SJ. Reactions of
[aryloxy(phenyl)carbene]pentacarbonylchromium(o) complexes. J Org Chem 2007; 72: 9456-63. http://dx.doi.org/10.1021/jo701422z
[112] Kondo Y, Urade M, Yamanishi Y, Chen X. Relative reactivity. J Chem Soc Perkin Trans 2 2002; 1449-54. http://dx.doi.org/10.1039/b203032m
[113] Edwards DR, Montoya – Peleaz P, Crudden CM. Experimental investigation. Org Lett 2007; 9: 5481-84. http://dx.doi.org/10.1021/ol702300d

Published

2014-06-02

How to Cite

Vlasov, V. M. (2014). Substituent Effects on the Activation Parameter Changes for the Aminolysis in the Bimolecular Nucleophilic Reactions in Solution. Journal of Applied Solution Chemistry and Modeling, 3(2), 81–93. https://doi.org/10.6000/1929-5030.2014.03.02.6

Issue

Section

General Articles