How Multi-Step versus One-Step Preparation Method Affects the Physicochemical Properties and Transfection Efficiency of DNA/DODAB:MO Lipoplexes

Authors

  • M. Real Oliveira University of Minho
  • J. Neves Silva University of Minho
  • A. C. Oliveira University of Minho
  • Marlene Lucio University of Minho
  • A. F. Gomes University of Minho

DOI:

https://doi.org/10.6000/1929-5030.2014.03.02.7

Keywords:

Monoolein-Based Lipoplexes, Lipoplex Preparation Method, Transfection.

Abstract

The consequences for the transfection efficiencies of different lipoplexes preparation methods, largely remain to be explored, but the knowledge of how different experimental approaches can affect the physicochemical properties and transfection efficiency is essential for a proper tailoring of transfection complexes to particular applications. Therefore, the influence of the number of mixing steps (one-step addition versus multi-step addition of liposomes to plasmid DNA (pDNA)) and lipoplex incubation temperature on the final physicochemical properties and transfection efficiency of pDNA/ Dioctadecyldimethylammonium Bromide (DODAB):1-monooleoyl-rac-glycerol (MO) complexes was studied in three distinct DODAB:MO molar ratios: 4:1, 2:1 and 1:1. Dynamic Light Scattering (DLS), Zeta (ζ) Potential, Ethidium Bromide (EtBr) exclusion assays were used to assess the formation, structure and destabilization of the lipoplexes, whereas in vitro transfection assays with pSV-β-gal plasmid DNA were performed to evaluate their transfection efficiency on the 293T mammalian cell line.

Results indicate that the morphology of pDNA/DODAB:MO complexes is dependent on the lipoplex preparation method, resulting in particles of distinct size, surface charge and membrane fluidity. These variations are visible during the complexation dynamics of pDNA and continue throughout the profile of pDNA release from pDNA/DODAB:MO lipoplexes upon incubation with Heparin (HEP), as well as in the in vitro transfection assays.

The stepwise addition of DODAB:MO vesicles to pDNA decreases the transfection efficiency of the lipoplexes, while the effect of the lipoplex preparation methods is dependent on the MO content.

Author Biography

A. F. Gomes, University of Minho

Nanodelivery I&D in Bionanotecnology-LDA- Biology Department

References

[1] Summers M and Eastoe J. Applications of polymerizable surfactants. Adv Coll Interface Sci 2003; 110: 137-52. http://dx.doi.org/10.1016/S0001-8686(02)00058-1
[2] Fendler JH. Atomic and molecular clusters in membrane chemistry. Chem Rev 1987; 87: 877-99. http://dx.doi.org/10.1021/cr00081a002
[3] Fendler JH. Interactions and Kinetics in Membrane Mimetic. Ann Rev Phys Chem 1984; 35: 137-57. http://dx.doi.org/10.1146/annurev.pc.35.100184.001033
[4] Fendler JH. Reactiviy control in membrane mimetic system. Pure Appl Chem 1982; 54: 1809-81. http://dx.doi.org/10.1351/pac198254101809
[5] Fendler JH. Microemulsions, micelles, and vesicles as media for membrane mimetic photochemistry. J Phys. Chem. 1980; 84: 1485-91. http://dx.doi.org/10.1021/j100449a012
[6] Langevin D, Meunier J and Cazabat AM. Microemulsions. La Recherche. 1985; 16: 720-28.
[7] Moss RA, Bizzigotti GO and Ihara Y. Biomimetic chemistry of functional vesicles and micelles. Stud Org Chem 1983; 13: 189-205.
[8] Breslow R. Biomimetic Chemistry in Oriented Systems. Israel J Chem 1979; 18: 187-91. http://dx.doi.org/10.1002/ijch.197900024
[9] Garti N and Aserin A. Microemulsions for solubilization and delivery of nutraceuticals and drugs. Drugs and Pharm Sci 2006; 158: 345-428.
[10] Salager JL, Anton RE, Sabatini DA, Harwell JH, Acosta EJ and Tolosa LI. Enhancing solubilization in microemulsionsState of the art and current trends. J Surf Deterg 2005; 8: 3- 21. http://dx.doi.org/10.1007/s11743-005-0328-4
[11] Eastoe J and Bumajdad A. Mixed surfactant microemulsions. Rec Res Dev Phys Chem 2000; 4: 337-50.
[12] García-Río L, Mejuto JC and Pérez-Lorenzo M. First evidence of simultaneous different kinetic behaviors at the interface and he continuous medium of w/o microemulsions. J Phys Chem B 2006; 110: 812-9. http://dx.doi.org/10.1021/jp055270o
[13] Shervani Z and Ikushima Y. The promotion of hydrolysis of acetylsalicylic acid in AOT/near-critical propane microemulsion. Chem Comm 2001; 23: 2506-7. http://dx.doi.org/10.1039/b103695p
[14] Pokhriyal NK, Sanghvi PG, Shah DO and Devi S. Kinetics and behavior of copolymerization in emulsion and microemulsion systems. Langmuir 2000; 16: 5864-70. http://dx.doi.org/10.1021/la991139u
[15] Holmes JD, Steytler DC, Rees GD and Robinson BH. Bioconversions in a water-in-CO2 microemilsion. Langmuir 1998; 14: 6371-6. http://dx.doi.org/10.1021/la9806956
[16] Kishida M, Umakoshi K, Ishiyama J, Nadata H and Wakabayashi K. Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion. Cat Today 1996; 29: 355-9. http://dx.doi.org/10.1016/0920-5861(95)00304-5
[17] Das ML, Bhattacharya PK and Moulik SP. Reaction kinetics in microemulsion medium. 1. Inversion of cane sugar in quaternary system of microemulsion containing water/Triton X-100/1-butanol/(cholesteryl benzoate + n-heptane). Langmuir 1990; 6: 1591-5. http://dx.doi.org/10.1021/la00100a011
[18] Da Rocha Pereira R, Zanette D and Nome F. Application of the pseudophase ion-exchange model to kinetics in microemulsions of anionic detergents. J Phys Chem 1990; 94: 356-61. http://dx.doi.org/10.1021/j100364a061
[19] Zilman AG and Safran SA. Thermodynamics and structure of self-assembled networks. Phys. Rev. E 2002; 66: 051107/1- 051107/28. http://dx.doi.org/10.1103/PhysRevE.66.051107
[20] Dvolaitzky M, Guyot M, Lagües M, Le Pesant JP, Ober R, Sauterey C, Taupin C. A structural description of liquid particle dispersions: Ultracentrifugation and small angle neutron scattering studies of microemulsions. J Chem Phys 1978; 69: 3279-88. http://dx.doi.org/10.1063/1.436979
[21] Pileni MP. Structure and reactivity in Reverse Micelles. Amsterdam: Elsevier; 1989.
[22] a) Winsor PA. Hydrotropy, solubilization, and related emulsification processes. Part I. Trans Faraday Soc 2 1948; 44: 376-82. b) Formariz TP, Urban MCC, Silva Jr AA, Gremião MPD, Oliveira G. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Braz J Pharm Sci 2005; 41: 301-13.
[23] Bauer A, Woelki S and Kohler HH. Rod formation of ionic surfactants: Electrostatic and conformational energies. J Phys Chem B 2004; 108: 2028-37. http://dx.doi.org/10.1021/jp036088v
[24] Dickson JL, Psathas PA, Salinas B, et al. Formation and growth of water-in-CO2 miniemulsions. Langmuir 2003; 19: 4895-04. http://dx.doi.org/10.1021/la0268810
[25] Hait SK and Moulik SP. Interfacial Composition and Thermodynamics of Formation of Water/Isopropyl Myristate Water-in-Oil Microemulsions Stabilized by Butan-1-ol and Surfactants Like Cetyl Pyridinium Chloride, Cetyl Trimethyl Ammonium Bromide, and Sodium Dodecyl Sulfate. Langmuir 2002; 18: 6736-44. http://dx.doi.org/10.1021/la011504t
[26] Vollmer J, Vollmer D and Strey R. Oscillating phase separation in microemulsions II: Description by bending free energy. J Chem Phys 1997; 107: 3627-33. http://dx.doi.org/10.1063/1.474720
[27] Paul S and Moulik SP. Physicochemical studies on microemulsions. IV-A comprehensive estimation of the energetics. Indian J Chem 1995; 34: 931-7.
[28] Nagaranjan R and Ruckenstien E. Theory of surfactant selfassembly: a predictive molecular thermodynamic approach. Langmuir 1991; 7: 2934-69. http://dx.doi.org/10.1021/la00060a012
[29] Rosano HL and Lyons GB. Free energy, enthalpy, and entropy changes during the formation of a nhexadecane/potassium stearate/water/1-pentanol microemulsion system. J Phys Chem 1985; 89: 363-5. http://dx.doi.org/10.1021/j100248a036
[30] Stecker MM and Benedek GB. Theory of multicomponent micelles and microemulsions. J Phys Chem 1984; 88: 6519- 44. http://dx.doi.org/10.1021/j150670a014
[31] Kertes AS and Lai WC. Thermodynamics of microemulsion systems. II. Enthalpies of solution in aqueous sodium chloride + 2-propanol systems. J Coll Int Sci 1980; 76: 48-54. http://dx.doi.org/10.1016/0021-9797(80)90269-6
[32] Ruckenstein E. On the thermodynamic stability of microemulsions. J Coll Int Sci 1978; 66: 369-71. http://dx.doi.org/10.1016/0021-9797(78)90320-X
[33] Ruckenstein E and Chi JC. Stability of microemulsions. J Chem Soc Faraday Trans 2 1975; 71: 1690-707. http://dx.doi.org/10.1039/f29757101690
[34] Tanford C. Micelle shape and size. J Phys Chem 1972; 76: 3020-4. http://dx.doi.org/10.1021/j100665a018
[35] Mitchell DJ and Ninham BW. Micelles, vesicles and microemulsions. J Chem Soc Faraday Trans 2 1981; 7: 601- 29. http://dx.doi.org/10.1039/f29817700601
[36] Israelachvili JN, Mitchell DJ and Ninhan BW. Theory of selfassembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 1976; 72: 1525-68. http://dx.doi.org/10.1039/f29767201525
[37] Sager WFC and Blokhuis EM. Curvature energy for droplet dimerization and aggregation in microemulsions. Prog Coll Pol Sci 1998; 110: 258-62. http://dx.doi.org/10.1007/BFb0118088
[38] Ruckenstein E and Krishnan R. The equilibrium radius and the domain of existence of microemulsions. Coll Int Sci 1980; 76: 188-200. http://dx.doi.org/10.1016/0021-9797(80)90285-4
[39] Ruckenstein E and Krishnan R. The equilibrium radius of microemulsions formed with ionic surfactants. J Coll Int Sci 1980; 75: 476-92. http://dx.doi.org/10.1016/0021-9797(80)90472-5
[40] Doerfler HD. Structure formation in amphiphilic multicomponent systems. Tens Surf Det 1994; 31: 29-35.
[41] Nagarajan R. Theory of micelle formation: quantitative approach to preceding micellar properties from surfactant molecular structure. Surf Sci Ser 1997; 70: 1-81.
[42] Cazabat AM, Chatenay D, Langevin D and Meunier J. Percolation and critical points in microemulsions. J Chem Soc Faraday Discuss 1982; 76: 291-3. http://dx.doi.org/10.1039/dc9837600291
[43] Kaler EW, Davis HT and Scriven LE. Toward understanding microemulsion microstructure. II. J Chem Phys 1983; 79: 5685-92. http://dx.doi.org/10.1063/1.445689
[44] Steinchen A, Sanfeld A and Devillez C. Structure and phase inversion of microemulsions in correlation with low interfacial tension. Role of alcohol-role of salinity. J. Chim Phys. et Phys-Chim. Biol. 1980; 77: 229-33.
[45] Ramachandran C, Vijayan S and Shah DO. Effect of salt structure of middle phase microemulsions using the spinlabel technique. J Phys Chem 1980; 84: 1561-7. http://dx.doi.org/10.1021/j100449a025
[46] Bansal VK, Shah DO and O'Connell JP. Influence of alkyl chain length compatibility on microemulsion structure and solubilization. J Coll Int Sci 1980; 75: 462-75. http://dx.doi.org/10.1016/0021-9797(80)90471-3
[47] Kumar C and Balasubramanian D. Structural features of water-in-oil microemulsions. J Phys Chem 1980; 84: 1895-9. http://dx.doi.org/10.1021/j100452a006
[48] Oakenfull D. Constraints of molecular packing on the size and stability of microemulsion droplets. J Chem Soc Faraday Trans 1: Phys Chem in Cond Phases 1980; 76: 1875-86. http://dx.doi.org/10.1039/f19807601875
[49] Chen SJ, Evans DF and Ninham BW. Properties and structure of tree-component ionic microemulsions. J Phys Chem 1984; 88: 1631-4. http://dx.doi.org/10.1021/j150652a038
[50] Beaglehole D, Clarkson MT, Upton A. Structure of the microemulsion/oil/water interfaces. J Coll and Int Sci 1984; 101: 330-5. http://dx.doi.org/10.1016/0021-9797(84)90042-0
[51] Sjöblom E, Waernheim T, Henriksson U and Stenius P. The importance of the cosurfactant and the oil for the properties of microemulsions. Tens Deterg 1984; 21: 303-6.
[52] Fletcher PDI, Galal MF, Robinson BH. Structural study of aerosol-OT-stabilized microemulsions of glycerol dispersed in n-heptane. J Chem Soc Faraday Trans 1: Phys Chem in Cond Phases 1984; 80: 3307-14. http://dx.doi.org/10.1039/f19848003307
[53] Roux D, Bellocq AM and Bothorel P. Effect of the molecular structure of components on micellar interactions in microemulsions. Prog Coll Polym Sci 1984; 69: 1-11.
[54] Blum FD, Pickup S, Ninham B, Chen SJ and Evans DF. Struture and dynamics in three-component microemulsions. J Phys Chem 1985; 89: 711-3. http://dx.doi.org/10.1021/j100250a030
[55] Velázquez MM and González-Blanco C. Polymer effects on the structure and properties of w/o microemulsions. Rec Dev Coll Int Res 2003; 1: 347-359.
[56] Donescu D, Fusulan L, Vasilescu M, Donescu A, Chiraleu F and Petcu C. The influence of monomers upon microemulsions with short chain cosurfactant. J Disp Sci Technol 2001; 22: 231-44. http://dx.doi.org/10.1081/DIS-100105210
[57] Ozawa K, Olsson U and Kunieda H. Oil-induced structural change in nonionic microemulsions. J Dispersion Sci Technol 2001; 22: 119-24. http://dx.doi.org/10.1081/DIS-100102687
[58] Rouviere J, Couret JM, Lindheimer M, Dejardin JL and Marony R. Structure of the AOT reverse aggregates. I. Shape and size of AOT micelles. J Chim Phys-Chim Biol 1979; 76: 289-296.
[59] Rouviere J, Couret JM, Lindheimer A, Lindheimer M and Brun B. Structure of AOT reverse aggregates. II. Salt effects upon AOT reverse micelles. J Chim Phys-Chim Biol 1979; 76: 297-301.
[60] Schulman JH, Stoeckenius W and Prince L. Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 1959; 63: 1677-80. http://dx.doi.org/10.1021/j150580a027
[61] Talmon Y and Prager S. Statistical thermodynamics of phase equilibriums in microemulsions. J Phys Chem 1978; 69: 2984-91. http://dx.doi.org/10.1063/1.437016
[62] Taupin C. New ideas for microemulsions structure: the Talmon-Prager and Gennes models. Struct Dyn Mol Syst 1986; 2: 195-208. http://dx.doi.org/10.1007/978-94-009-4662-0_10
[63] Dvolaitzkay M, Guyot M, Langues M, Le Pesant JP, Ober R and Taupin C. A structural description of liquid particle dispersions: Ultracentrifugation and small angle neutron scattering studies of microemulsions. J Chem Phys 1978; 69: 3279-88. http://dx.doi.org/10.1063/1.436979
[64] Drifford M, Tabony J and De Geyer A. Structure of a microemulsion in the critical region: neutron small-angle scattering results. Chem Phys Lett 1983; 96: 119-25. http://dx.doi.org/10.1016/0009-2614(83)80129-8
[65] Shukla A and Neubert RHH. Investigation of W/O microemulsion droplets by contrast variation light scattering. Pramana 2005; 65: 1097-108. http://dx.doi.org/10.1007/BF02705284
[66] Capuzzi G, Pini F, Gambi CMC, Monduzzi M, Baglioni P and Teixeira J. Small-Angle Neutron Scattering of Ca(AOT)2/D2O/Decane Microemulsions. Langmuir 1997; 13: 6927-30. http://dx.doi.org/10.1021/la970561c
[67] Caboi F, Capuzzi G, Baglioni P and Monduzzi M. Microstructure of AOT/Water/Decane w/o Microemulsions. J Phys Chem 1997; 101: 10205-12. http://dx.doi.org/10.1021/jp971274k
[68] Eriksson JC and Ljunggren S. General conditions governing the formation of cylindrical W/O microemulsion aggregates. J Coll Interf Sci 1991; 145 224-34. http://dx.doi.org/10.1016/0021-9797(91)90114-N
[69] Leung R and Shah DO. Solubilization and phase equilibria of water-in-oil microemulsions. I. Effects of spontaneous curvature and elasticity of interfacial films. J Coll Interf Sci 1986; 120: 320-9. http://dx.doi.org/10.1016/0021-9797(87)90360-2
[70] Kaler EW, Bennet KE, Davis HT and Scriven LE, Toward understanding microemulsion microstucture: a small-angle xray scattering study. J Chem Phys 1983; 79: 5673-84. http://dx.doi.org/10.1063/1.445688
[71] Eicke HF and Rehak J. On the formation of water/oil microemulsions. Helv Chim Acta 1976; 59: 2883-91. http://dx.doi.org/10.1002/hlca.19760590825
[72] Degiorgio V. Physics of amphiphiles: micelles, vesicles and microemulsions. North Holland Phys Pub; 1985.
[73] Pouchelon A, Chatenay D, Meunier J and Langevin D. Origin of low interfacial tensions in systems involving microemulsion phase. J Coll Int Sci 1981; 82: 418-22. http://dx.doi.org/10.1016/0021-9797(81)90383-0
[74] Atik SS, and Thomas JK. Transport of photoproduced ions in water in oil microemulsions: Movement of ions from one water pool to another. J Amer Chem Soc 1981; 103: 3543- 50. http://dx.doi.org/10.1021/ja00402a048
[75] Fletcher PDI, Howe AM and Robinson BH. The kinetics of solubilisate exchange between water droplets of a water-inoil microemulsion. J Chem Soc Faraday Trans 1 1987; 83: 985-1006. http://dx.doi.org/10.1039/f19878300985
[76] Lang J, Jada A and Malliaris A. Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2- ethylhexyl)sulfosuccinate. J Phys Chem 1988; 92: 1946-53. http://dx.doi.org/10.1021/j100318a047
[77] Cabos C, Delord P. Study, by neutron small angle scattering, of addition of an electrolyte to reversed micellar solution. J Phys Lett 1980; 41: 455-8. http://dx.doi.org/10.1051/jphyslet:019800041018045500
[78] Kirkpatrick S. Classical transport in disordered media: Scaling and effective-medium theories. Phys Rev Lett 1971; 27: 1722-5. http://dx.doi.org/10.1103/PhysRevLett.27.1722
[79] Kirkpatrick S. Percolation and Conduction. Rev Mod Phys 1973; 54: 574-88. http://dx.doi.org/10.1103/RevModPhys.45.574
[80] Webman J, Jortner J and Cohen MH. Numerical simulation of electrical conductivity in microscopically inhomogenous materials. Phys Rev B 1975; 11: 2885-92. http://dx.doi.org/10.1103/PhysRevB.11.2885
[81] Granqvist CG and Hunderi O. Conductivity of homogeneous materials: Effective-medium theory with dipole-dipole interaction. Phys Rev B 1978; 18: 1554-61. http://dx.doi.org/10.1103/PhysRevB.18.1554
[82] Bernasconi J and Weisman HJ. Effective-medium theories for site-disordered resistance networks. Phys Rev B 1976; 13: 1131-9. http://dx.doi.org/10.1103/PhysRevB.13.1131
[83] Paul S, Bisal S and Moulik SP. Physicochemical studies on microemulsions: test of the theories of percolation. J Phys Chem 1992; 96: 896-901. http://dx.doi.org/10.1021/j100181a067
[84] Eicke HF, Borkovec M and Das-Gupta B. Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model. J Phys Chem 1989; 93: 314-7. http://dx.doi.org/10.1021/j100338a062
[85] Kallay N and Chittofrati A. Conductivity of microemulsions: refinement of charge fluctuation model. J Phys Chem 1990; 94: 4755-6. http://dx.doi.org/10.1021/j100374a070
[86] Bhattacharya S, Stokes JP, Kim MW and Huang JS. Percolation in an oil-continuous microemulsion. Phys Rev Lett 1985; 55: 1884-7. http://dx.doi.org/10.1103/PhysRevLett.55.1884
[87] Kim MW and Huang JS. Percolationlike phenomena in oilcontinuous microemulsions. Phys Rev A 1986; 34: 719-22. http://dx.doi.org/10.1103/PhysRevA.34.719
[88] Álvarez E, García-Río L, Mejuto JC and Navaza JM. Effects of temperature on the conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of amides and ethylene glycol. J Chem Eng Data 1999; 44: 484-7. http://dx.doi.org/10.1021/je980129c
[89] Álvarez E, García-Río L, Mejuto JC, Navaza JM and PérezJuste J. Effects of temperature on the conductivity of microemulsions: Influence of sodium hydroxide and hydrochloric acid. J Chem Eng Data 1999; 44: 846-9. http://dx.doi.org/10.1021/je990026+
[90] Dasilva-Carvalhal J, García-Río L, Gómez-Díaz D, Mejuto JC and Navaza JM. Effect of temperature upon electrical conductivity of sodium bis(2-ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water + phase transfer catalyst. J Chem Eng Data 2006; 51: 1749-54. http://dx.doi.org/10.1021/je060162w
[91] Moha-Ouchane M, Peyrelasse J and Boned C. Percolation transition in microemulsions: Effect of water-surfactant ratio, temperature, and salinity. Phys Rev A 1987; 35: 3027-32. http://dx.doi.org/10.1103/PhysRevA.35.3027
[92] Mathew C, Patanjali PK, Nabi A and Maitra A. On the concept of percolative conduction in Water-in-Oil microemulsions. Coll Surf 1988; 30: 253-63. http://dx.doi.org/10.1016/0166-6622(88)80210-5
[93] Jada A, Lang J and Zana R. Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions. J Phys Chem 1989; 93: 10-12. http://dx.doi.org/10.1021/j100338a004
[94] Jada A, Lang J, Zana R, Makhloufi R, Hirsch E and Candau SJ. Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 2. Droplet sizes and interactions and exchange of material between droplets. J Phys Chem 1990; 94: 387-95. http://dx.doi.org/10.1021/j100364a066
[95] García-Río L, Gómez-Díaz D, Mejuto JC, Navaza JM, Rodríguez-Álvarez A and Pérez-Lorenzo M. Percolative phenomena of AOT-based microemulsions in presence of organic acids. Rec Dev Coll Int Res 2004; 2: 35-45.
[96] García-Río L, Gómez-Díaz D, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Internal dynamics and properties of water/AOT/isooctane microemulsions: effect of additives. Rec Res Dev Phys Chem 2002; 6: 213-40.
[97] Dasilva-Carvalhal J, García-Río L, Gómez-Díaz D, Mejuto JC and Rodríguez-Dafonte P. Influence of crown ethers on the electric percolation of AOT/Isooctane/Water (w/o) microemulsions. Langmuir 2003; 19: 5975-83. http://dx.doi.org/10.1021/la026857m
[98] García-Río L, Hervés P, Leis JR and Mejuto JC. Influence of crown ethers and macrocyclic cryptands upon the percolation phenomena in AOT/isooctane/H2O microemulsions. Langmuir 1997; 13: 6083-8. http://dx.doi.org/10.1021/la970297n
[99] Hait SK, Sanyal A and Moulik SP. Physicochemical studies on microemulsions. 8. The effects of aromatic methoxy hydrotropes on droplet clustering and understanding of the dynamics of conductance percolation in Water/Oil microemulsion systems. J Phys Chem B 2002; 106: 12642- 50. http://dx.doi.org/10.1021/jp026702n
[100] Roy BK and Moulik SP. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors. Coll Surf A 2002; 203: 155-66. http://dx.doi.org/10.1016/S0927-7757(01)01099-8
[101] Hait SK, Moulik SP, Rodgers MP, Burke SE and Palepu R. Physicochemical studies on microemulsions. 7. Dynamics of percolation and energetics of clustering in Water/AOT/Isooctane and Water/AOT/Decane w/o microemulsions in presence of hydrotopes (sodium salicylate, -naphthol, -naphthol, resorcinol, catechol, hydroquinone, pyrogallol and urea) and bile salt (sodium cholate). J Phys Chem B 2001; 105: 7145-54. http://dx.doi.org/10.1021/jp0105084
[102] Moulik SP, De GC, Bhowmik BB and Panda AK. Physicochemical studies on microemulsions. 6. Phase behavior, dynamics of percolation, and energetics of droplet clustering in Water/AOT/n-Heptane system influenced by additives (sodium cholate and sodium salicylate). J Phys Chem B 1999; 103: 7122-9. http://dx.doi.org/10.1021/jp990360c
[103] Ray S, Paul S and Moulik SP. Physicochemical studies on microemulsions V. Additive effects on the performance of scaling equations and activation energy for percolation of conductance of Water/AOT/Heptane microemulsion. J Coll Int Sci 1996; 183: 6-12. http://dx.doi.org/10.1006/jcis.1996.0512
[104] Ray S, Paul S and Moulik SP. Structure and dynamics of microemulsions. Part 1. Effect of additives on percolation of conductance and energetics of clustering in water–AOT– heptane microemulsions. J Chem Soc Faraday Trans 1993; 89: 3277-82. http://dx.doi.org/10.1039/ft9938903277
[105] García-Río L, Leis JR, Mejuto JC, Peña ME. and Iglesias E. Effects of additives on the internal dynamics and properties of Water/AOT/Isooctane microemulsions. Langmuir 1994; 10: 1676-83. http://dx.doi.org/10.1021/la00018a013
[106] Finer EG, Franks F and Tait MJ. Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc 1972; 94: 4424-9. http://dx.doi.org/10.1021/ja00768a004
[107] Evans DF, Mitchell DJ and Ninham BW. Oil, water, and surfactant: properties and conjectured structure of simple microemulsions. J Phys Chem 1986; 90: 2817-25. http://dx.doi.org/10.1021/j100404a009
[108] Mejuto JC. Organic Reactivity in Microheterogeneous media. Doctoral Thesis. University of Santiago de Compostela; 1996.
[109] Chakraborty I and Moulik SP. Physicochemical studies on microemulsions 9. Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils. J Coll Int Sci 2005; 289: 530-41. http://dx.doi.org/10.1016/j.jcis.2005.03.080
[110] Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP, Roy S, Das D and Das PK. Physicochemical studies on cetylammonium bromide and its modified (mono-, di-, and trihydroxyethylated) head group analogues. Their micellization characteristics in water and thermodynamic and structural aspects of water-in-oil microemulsions formed with them along with n-hexanol and isooctane. J Phys Chem B 2006; 110: 11314-26. http://dx.doi.org/10.1021/jp055720c
[111] Álvarez E, García-Río L, Mejuto JC and Navaza JM. Effects of temperature on the conductivity of sodium bis(2- ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of sodium salts. J Chem Eng Data 1998; 43:519-22. http://dx.doi.org/10.1021/je970238b
[112] Álvarez E, García-Río L, Mejuto JC, Navaza JM and PérezJuste J. Effects of temperature on the conductivity of AOT/isooctane/water microemulsions. Influence of salts. J Chem Eng Data 1999; 44: 850-3. http://dx.doi.org/10.1021/je9900575
[113] Bravo C, Hervés P, Leis JR and Peña ME. Micellar effects in the acid denitrosation of N-nitroso-N-methyl-ptoluenesulfonamide. J Phys Chem 1990; 94: 8816-20. http://dx.doi.org/10.1021/j100388a014
[114] He Z, O’Connor PJ, Romsted LS and Zanette DJ. Specific counterion effects on indicator equilibria in micellar solutions of decyl phosphate and lauryl sulfate surfactants. J Phys Chem 1989; 93: 4219-26. http://dx.doi.org/10.1021/j100347a064
[115] Lemaire B, Bothorel P and Roux D. Micellar interactions in water-in-oil microemulsions. 1. Calculated interaction potential. J Phys Chem 1983; 87: 1023-8. http://dx.doi.org/10.1021/j100229a021
[116] Brunetti S, Roux D, Mellocq AM, Fourche G and Bothorel P. Micellar interactions in water-in-oil microemulsions. 2. Light scattering determination of the second virial coefficient. J Phys Chem 1983; 87: 1028-34. http://dx.doi.org/10.1021/j100229a022
[117] Hou M, Shah DO. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions, Langmuir 1987; 3 1086-96. http://dx.doi.org/10.1021/la00078a036
[118] Robson-Wright M. The Nature of Electrolyte Solutions. MacMillan Education; 1988.
[119] García-Rio L. Studies on the reactivity of nitrosocompounds in water, organics solvents and microheterogeneous media. Doctoral Thesis. University of Santiago de Compostela; 1993.
[120] Álvarez E, García-Río L, Leis JR, Mejuto JC and Navaza JM. Effect of the temperature on the conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions in the presence of ureas and thioureas. J Chem Eng Data 1998; 43: 123-7. http://dx.doi.org/10.1021/je970104y
[121] Fang J and Venable RL. Conductivity study of the microemulsion system sodium dodecyl sulfate-hexylamineheptane-water. J Coll Int Sci 1987; 116: 269-77. http://dx.doi.org/10.1016/0021-9797(87)90120-2
[122] Swenson CA. Effects of protein denaturants of the ureaguanidinium class on bulk water structure: An infrared study. Arch Biochem Biophys 1966; 117: 494-8. http://dx.doi.org/10.1016/0003-9861(66)90088-9
[123] Sasaki K and Arakawa K. The ultrasonic study of aqueous solutions of alkyl-substituted urea. Bull Chem Soc Jpn 1969; 42: 2485-9. http://dx.doi.org/10.1246/bcsj.42.2485
[124] Kuharski RA and Rossky P. Molecular dynamics study of solvation in urea water solution. J Am Chem Soc 1984; 106 5786-93. http://dx.doi.org/10.1021/ja00332a005
[125] Cristinziano P, Lelj F, Amoedo P, Barone G and Barone V. Stability and structure of formamide and urea dimers in aqueous solution. A theoretical study. J Chem Soc Faraday Trans 1 1989; 85: 621-32. http://dx.doi.org/10.1039/f19898500621
[126] Subramanian D, Sarma TS, Balasubramanian D and Ahluwalia JC. Effects of the urea-guanidinium class of protein denaturation on water structure: heats of solution and proton chemical shift studies. J Phys Chem 1971; 75: 815-20. http://dx.doi.org/10.1021/j100676a016
[127] Costa-Amaral CL, Brino O, Chaimovich H and Politi JM. Formation and properties of reversed micelles of Aerosol OT containing urea in the aqueous pool. Langmuir 1992; 8: 2417-21. http://dx.doi.org/10.1021/la00046a013
[128] Kang YS, McManus HJD and Kevan L. An electron magnetic resonance study on the photoionization of Nalkylphenothiazines in dioctadecyldimethylammonium chloride frozen vesicles: the effect of urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,1',3,3'-tetramethylurea. Phys Chem 1992; 96: 10055-60. http://dx.doi.org/10.1021/j100203a085
[129] Moulik SP, Digout LG, Aylward WM and Palepu R. Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir 2000; 16: 3101-6. http://dx.doi.org/10.1021/la991028v
[130] Álvarez E, García-Río L, Leis JR, Mejuto JC and Navaza JM. Effect of temperature on the conductivity of sodium bis(2- ethylhexyl) sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of Amines. J Chem Eng Data 1998; 43: 433-5. http://dx.doi.org/10.1021/je970232m
[131] Giammona G, Goffredi F, Liveri F, Turco V and Vassallo G. Water structure in water/AOT/n-heptane microemulsions by FTIR spectroscopy. J Coll Int Sci 1992; 154: 411-5. http://dx.doi.org/10.1016/0021-9797(92)90156-G
[132] García-Río L, Hervés P, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Effects of alkylamines on the percolation phenomena in water/AOT/isooctane microemulsions. J Coll Int Sci 2000; 225: 259-64. http://dx.doi.org/10.1006/jcis.2000.6771
[133] Álvarez E, García-Río L, Leis JR “et al.”. Effect of temperature on the electrical conductivity of sodium bis(2- ethylhexyl)sulfosuccinate + 2,2,4-trimethylpentane + water microemulsions. Influence of alkylamines. J Chem Eng Data 1999; 44: 1286-90. http://dx.doi.org/10.1021/je990108y
[134] García-Río L, Hervés P, Mejuto JC, Pérez-Juste J and Rodríguez-Dafonte P. Pseudophase approach to reactivity in microemulsions: Quantitative explanation of the kinetics of the nitroso group transfer reactions between N-methyl-Nnitroso-p- toluenesulfonamide and secondary alkylamines in Water/AOT/Isooctane microemulsions. Ind Eng Chem Res 2003; 44: 5450-6. http://dx.doi.org/10.1021/ie0208523
[135] García-Río L, Mejuto JC, Pérez-Lorenzo M, Rodríguez- Álvarez A and Rodríguez-Dafonte P. Influence of anionic surfactants on the electric percolation of AOT/isooctane/water microemulsions. Langmuir. 2005; 21: 6259-64. http://dx.doi.org/10.1021/la0501987
[136] Eicke HF and Meier W. Nonmonotonic pattern of the critical percolation temperature due to variations of additive chain length in water-in-oil microemulsions. Coll Polym Sci 2001; 279: 301-4. http://dx.doi.org/10.1007/s003960000462
[137] Eicke HF. Nonmonotonic electric conductivity by alkyl-chain variation of an ionic additive in percolated nonionic W/Omicroemulsions. J Phys Chem B. 2001; 105: 2753-6. http://dx.doi.org/10.1021/jp0041003
[138] Cid-Samamed A, García-Río L, Fernández-Gándara D, Mejuto JC, Morales J and Pérez-Lorenzo M. Influence of nalkyl acids on the percolative phenomena in AOT-based microemulsions. J Coll Int Sci 2008; 318: 525-9. http://dx.doi.org/10.1016/j.jcis.2007.11.001
[139] Nazário LMM, Crespo JPSG, Holzwarth JF and Hatton TA. Dynamics of AOT and AOT/nonionic cosurfactant microemulsions. An Iodine-Laser temperature jump study. Langmuir 2000; 16: 5892-9. http://dx.doi.org/10.1021/la991674u
[140] Menger FM. Structure of micelles. Acc Chem Res 1979; 12: 111-7. http://dx.doi.org/10.1021/ar50136a001
[141] Bravo C, García-Río L, Leis JR, Peña ME and Iglesias EJ. A 1 H NMR study of the location of nitroso compounds and penetration of water in micellar aggregates. Coll Int Sci 1994; 166: 316-20. http://dx.doi.org/10.1006/jcis.1994.1301
[142] Ruasse M-F, Blagoeva IB, Ciri R, et al. Organic reactions in micro-organized media: Why and how? Pure Appl Chem 1997; 69: 1923-32. http://dx.doi.org/10.1351/pac199769091923
[143] García-Río L, Herves P, Mejuto JC, Perez-Juste J and Rodríguez-Dafonte P. Pseudophase approach to reactivity in microemulsions: Quantitative explanation of the kinetics of the nitroso group transfer reactions between N-methyl-Nnitroso-p- toluenesulfonamide and secondary alkylamines in Water/AOT/Isooctane microemulsions. Ind Eng Chem Res 2003; 42: 5450-6. http://dx.doi.org/10.1021/ie0208523
[144] García-Río L, Hervés P, Mejuto JC and Rodríguez-Dafonte P. Nitrosation reactions in Water/AOT/Xylene microemulsions. Ind Eng Chem Res 2006; 45: 600-6. http://dx.doi.org/10.1021/ie050925t
[145] García-Río L, Leis JR, Mejuto JC and Pérez-Lorenzo M. Microemulsions as microreactors in physical organic chemistry. Pure Appl Chem 2007; 79: 1111-23. http://dx.doi.org/10.1351/pac200779061111
[146] Astray G, Cid A, García-Río L, Hervella P, Mejuto JC and Pérez-Lorenzo M. Organic reactivity in AOT-stabilized microemulsions. Prog React Kinet Mech 2008; 33: 81-97. http://dx.doi.org/10.3184/146867807X273173
[147] Stamatis H, Xenakis A, Menge U and Kolisis FN. Kinetic study of lipase catalyzed esterification reactions in water-iniol microemulsions. Biotechnol Bioeng 1993; 42: 931-7. http://dx.doi.org/10.1002/bit.260420803
[148] Stamatis H, Xenakis A, Dimitriadis E and Kolisis FN. Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions. Biotechnol Bioeng 1995; 45: 33-41. http://dx.doi.org/10.1002/bit.260450106
[149] Kolisis FN, Valis TP and Xenakis A. Lipase-catalyzed esterification of fatty acids in nonionic microemulsions. Ann New York Acad Sci 1990; 613: 674-80. http://dx.doi.org/10.1111/j.1749-6632.1990.tb18244.x

Published

2014-06-02

How to Cite

Oliveira, M. R., Silva, J. N., Oliveira, A. C., Lucio, M., & Gomes, A. F. (2014). How Multi-Step versus One-Step Preparation Method Affects the Physicochemical Properties and Transfection Efficiency of DNA/DODAB:MO Lipoplexes. Journal of Applied Solution Chemistry and Modeling, 3(2), 94–105. https://doi.org/10.6000/1929-5030.2014.03.02.7

Issue

Section

General Articles