The Radical-Chain Addition to Double Molecular Bonds by the Nonbranched-Chain Mechanism: Low-Reactive Free Radicals Shortening Kinetic Chains

Authors

  • Michael M. Silaev Lomonosov Moscow State University

DOI:

https://doi.org/10.6000/1929-5030.2014.03.04.3

Keywords:

Binary System, Unsaturated Compound, Low-Reactive Radical, Autoinhibitor, Competing Reaction, Non-Branched-Chain Addition, Kinetic Equation, Rate, Parameters, Thermochemical Data, Energy.

Abstract

Five reaction schemes are suggested for the initiated nonbranched-chain addition of free radicals to the multiple bonds of the unsaturated compounds. The proposed schemes include the reaction competing with chain propagation reactions through a reactive free radical. The chain evolution stage in these schemes involves three or four types of free radicals. One of them is relatively low-reactive and inhibits the chain process by shortening of the kinetic chain length. Based on the suggested schemes, nine rate equations (containing one to three parameters to be determined directly) are deduced using quasi-steady-state treatment. These equations provide good fits for the nonmonotonic (peaking) dependences of the formation rates of the molecular products (1:1 adducts) on the concentration of the unsaturated component in binary systems consisting of a saturated component (hydrocarbon, alcohol, etc.) and an unsaturated component (olefin, allyl alcohol, formaldehyde, or dioxygen). The unsaturated compound in these systems is both a reactant and an autoinhibitor generating low-reactive free radicals. A similar kinetic description is applicable to the nonbranched-chain process of the free-radical hydrogen oxidation, in which the oxygen with the increase of its concentration begins to act as an oxidation autoingibitor (or an antioxidant). The energetics of the key radical-molecule reactions is considered.

Author Biography

Michael M. Silaev, Lomonosov Moscow State University

Chemistry

References

[1] Gurvich LV, Karachevtsev GV, Kondrat'ev VN, Lebedev YuA, Medvedev VA, Potapov VK, Khodeev YuS. Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu. (Bond Dissociation Energies, Ionization Potentials, and Electron Affinity), Kondrat'ev VN, Ed., Nauka, Moscow, 1974.
[2] Benson SW. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters. 2nd ed., Wiley, New York 1976.
[3] Pedley JB, Naylor RD, Kirby SP. Thermochemical Data of Organic Compounds. 2nd ed. Chapman & Hall, London 1986. http://dx.doi.org/10.1007/978-94-009-4099-4
[4] Orlov YuD, Lebedev YuA, Saifullin ISh. Termokhimiya organicheskikh svobodnykh radikalov. (Thermochemistry of Organic Free Radicals). Kutepov AM, Ed., Nauka, Moscow 2001.
[5] Walling Ch. Free Radicals in Solution. Wiley, New York 1956.
[6] Emanuel NM, Denisov ET, Maizus ZK. Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze. (Chain Oxidation Reactions of Hydrocarbons in the Liquid Phase). Nauka, Moscow 1965.
[7] Poluektov VA, Babkina EI, Begishev IR. On the Dependence of the Rate of a Chain Reaction on the Reactant Ratio. Dokady Akademii Nauk SSSR 1974; 215(3): 649-652.
[8] Silaev MM, Bugaenko LT. Mathematical Simulation of the Kinetics of Radiation Induced Hydroxyalkylation of Aliphatic Saturated Alcohols. Radiation Physics and Chemistry 1992; 40(1): 1-10.
[9] Silaev MM, Bugaenko LT. Kinetics of the Addition of - Hydroxyalkyl Radicals to 2-Propen-1-ol and Formaldehyde. Kinetics and Katalysis 1994; 35(4): 509-513.
[10] Silaev MM. Competition Kinetics of Nonbranched Chain Processes of Free-Radical Addition to Double Bonds of Molecules with the Formation of 1:1 Adducts. Kinetica i Kataliz., 1999, vol. 40(2: 281-284, English Translation in: Kinetics and Catalysis, 1999, vol. 40(2: 256-259.
[11] Silaev MM. Simulation of the Nonbranched-Chain Addition of Saturated Free Radicals to Alkenes and Their Derivatives Yielding 1:1 Adducts. Teoreticheskie Osnovy Khimicheskoi Tekhnologii 2007; 41(3): 280-295, English Translation in: Theoretical Foundations of Chemical Engineering 2007; 41(3): 273-278. http://dx.doi.org/10.1134/S0040579507030062
[12] Silaev MM. Simulation of Nonbranched Chain Processes for Producing 1,2-Alkanediols in Alcohol-Formaldehyde Systems. Teoreticheskie Osnovy Khimicheskoi Tekhnologii 2007; 41(4): 379-384, English Translation in: Thoretical Foundations Chemical Engineering 2007; 41(4): 357-361. http://dx.doi.org/10.1134/S0040579507040045
[13] Silaev MM. A New Competitive Kinetic Model of Radical Chain Oxidation: Oxygen as an Autoinhibitor. Biofizika 2001; 46(2): 203-209, English Translation in: Biophysics 2001; 46(2): 202-207.
[14] Silaev MM. Simulation of the Initiated Addition of Hydrocarbon Free Radicals and Hydrogen Atoms to Oxygen via a Nonbranched Chain Mechanism. Teoreticheskie Osnovy Khimicheskoi Tekhnologii 2007; 41(6): 634-642, English Translation in: Theoretical Foundation of Chemical Engineering 2007; 41(6): 831-838. http://dx.doi.org/10.1134/S0040579507060073
[15] Bard Y. Nonlinear Parameter Estimation. Academic, New York 1974.
[16] Bateman L. Olefin Oxidation. Quarterly Reviews 1954; 8(2): 147-167.
[17] Urry WH, Stacey FW, Huyser ES, Juveland OO. The Peroxide- and Light-Induced Additions of Alcohols to Olefins. Journal of the American Chemical Society 1954; 76(2): 450- 455. http://dx.doi.org/10.1021/ja01631a037
[18] Urry WH, Juveland OO. Free Radical Additions of Amines to Olefins. Journal of the American Chemical Society 1958; 80(13): 3322-3328. http://dx.doi.org/10.1021/ja01546a033
[19] Shostenko AG, Zagorets PA, Dodonov AM, Greish AA. - Radiation-Induced Addition of Phosphorus Trichloride to Isobutylene. Khimiya Vysokikh Energii 1970; 4(4) 357.
[20] Kim V, Shostenko AG, Gasparyan MD. Reactivity of Polychloroalkyl Radicals in the Telomerization of CCl4 with 1- Propene and 2-Methyl-1-Propene” (in Russian), Reaction Kinetics and Catalysis Letters 1979; 12(4): 479-484.
[21] Myshkin VE, Shostenko AG, Zagorets PA, Markova KG, Pchelkin AI. Determination of Absolute Rate Constants for the Addition of the Ethyl Radical to Olefins. Teoreticheskaya i Eksperimental’naya Khimiya 1977; 13(2): 266-271.
[22] Zamyslov RA, Shostenko AG, Dobrov IV, Tarasova NP. Kinetics of -Radiation-Induced Reactions of 2-Propanol with Trifluoropropene and Hexaflu-oropropene. Kinetika i Katalyz 1987; 28(4): 977-979.
[23] Silaev MM. Dependence of Radiation-chemical -Diol Yields on the 2-Propen-1-ol Concentration in the Radiolysis of Aliphatic Saturated C1-C3 Alcohol + 2-Propen-1-ol Systems. Khimiya Vysokikh Energii 1990; 24(3): 282-283.
[24] Silaev MM. -Diol Formation via the Autooxidation of 2- Propen-1-ol Solutions in Saturated Alcohols. Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya 1994; 35(1): 40- 42.
[25] Bugaenko LT, Kuzmin MG, Polak LS. High-Energy Chemistry. Horwood Hall, New York 1993; p. 112.
[26] Thomas JK. Pulse Radiolysis of Aqueous Solutions of Methyl Iodide and Methyl Bromide. The Reactions of Iodine Atoms and Methyl Radicals in Water. The Journal of the Physical Chemistry 1967; 71(6): 1919-1925. http://dx.doi.org/10.1021/j100865a060
[27] Ogorodnikov SK. Formal'degid (Formaldehyde), Khimiya, Leningrad 1984.
[28] Silaev MM, Rudnev AV, Kalyazin EP. Formaldehyde. III. Concentration of Free Formaldehyde as a Function of Temperature, Polarity of Solvents, and Total Concentration of Formaldehyde in Solution. Zhurnal Fizicheskoi Khimii 1979; 53(7): 1647-1651.
[29] Oyama M. A Free-Radical Reaction of Primary and Secondary Alcohols with Formaldehyde. The Journal of Organic Chemistry 1965; 30(7): 2429-2432. http://dx.doi.org/10.1021/jo01018a079
[30] Nikitin GI, Lefor D, Vorob’ev ED. Free Radical Reaction of Primary Alcohols with Formaldehyde. Izvestiya Akademii Nauk SSSR, Ser. Khimiya 1966; 7: 1271-1272.
[31] Dzhurinskaya MB, Rudnev AV, Kalyazin EP. High Temperature UV Photolysis of Formaldehyde in Liquid Methanol. Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya 1984; 25(2): 173-176.
[32] Kalyazin EP, Petryaev EP, Shadyro OI. Reaction between Oxyalkyl Radicals and Aldehydes. Zhurnal Organicheskoi Khimii 1977; 13(2): 293-295.
[33] Novoselov AI, Silaev AI, MM, Bugaenko LT. Effect of Temperature on the Yields of Final Products in the - Radiolysis of Formaldehyde Solutions in C1-C3 Alkanols. Khimiya Vysokich Energii 2004; 38(4): 270-272, English Translation in: High Energy Chemistry 2004; 38(4): 236-238. http://dx.doi.org/10.1023/B:HIEC.0000035410.87205.09
[34] Novoselov AI, Silaev MM, Bugaenko LT. Dependence of Ethanediol Yield on Formaldehyde Concentration in - Radiolysis of Methanol-Formaldehyde System at 373-473 K. Khimiya Vysokikh Energii 2008; 42(1): 74-75, English Translation in: High Energy Chemistry 2008; 42(1): 69-70. http://dx.doi.org/10.1134/S0018143908010141
[35] Novoselov AI, Silaev MM, Bugaenko LT. -Induced SingleStep Synthesis of Ethylene Glycol from MethanolFormaldehyde Solution. Theoreticheskie Osnovy Khimicheskoy Tekhnologii 2010; 44(4): 450-453, English Translation in: Theoretical Foundation of Chemical Engineering 2010; 44(4): 432-435. http://dx.doi.org/10.1134/S0040579510040111
[36] Novoselov AI, Silaev MM, Bugaenko LT. Dependence of 1,2- Propanediol Yield on Formaldehyde Concentration in - Radiolysis of Ethanol-Formaldehyde System at 373473 K. Khimiya Vysokikh Energii 2007; 41(1): 58, English Translation in: High Energy Chemistry 2007; 41(1): p. 53. http://dx.doi.org/10.1134/S0018143907010110
[37] Pshezhetskii SYa, Kotov AG, Milinchuk VK, Roginskii VA, Tupikov VI. EPR svobodnykh radikalov v radiatsionnoi khimii” (ESR of Free Radicals in Radiation Chemistry). Khimiya, Moscow 1972.
[38] Silaev MM. Estimating the Solvent Concentration in Formaldehyde Solutions at Various Temperatures. Zhurnal Fizicheskoy Khimii 1993; 67(9): 1944.
[39] Silaev MM. Applied Aspects of the -Radiolysis of C1-C4 Alcohols and Binary Mixtures on Their Basis. Khimiya Vysokikh Energii 2002; 36(2): 97-101, English Translation in: High Energy Chemistry 2002; 36(2): 70-74. http://dx.doi.org/10.1023/A:1014650726821
[40] Silaev MM, Bugaenko LT, Kalyazin EP. On the Possibility of Adequately Estimating the Rate Constants for the Reaction of Hydroxyalkyl Radicals with Each Other Using the SelfDiffusion Coefficients or Viscosities of the Corresponding Alcohols. Vestnik Moskovskogo. Univiversiteta, Ser. 2: Khimiya 1986; 27(4): 386-389.
[41] Shadyro OI. Radiation-chemical Conversions of Aldehydes in Various Systems. Ph.D. Thesis (Chemistry), Belarusian State University, Minsk 1975.
[42] Silaev MM. Relative Reactivity of -Hydroxyethyl Radicals for 2-Propene-1-ol and Formaldehyde Double-Bond Addition. Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya 1993; 34(3): 311.
[43] Seki H, Nagai R, Imamura M. -Radiolysis of a Binary Mixture of Methanol and Water. The Formation of Formaldehyde in the Radiolysis of Liquid Methanol. Bulletin of the Chemical Society of Japan 1968; 41(12): 2877-2881. http://dx.doi.org/10.1246/bcsj.41.2877
[44] Shtern VYa. Mekhanizm okisleniya uglevodorodov v gazovoi faze (Mechanism of the Gas-Phase Oxidation of Hydrocarbons). Akademiya Nauk SSSR, Moscow 1960.
[45] Bäckström HLJ. Der Kettenmechanismus bei der Autoxydation von Aldehyden. Zeitschrift für physikalische Chemie (B). Bd. 1934; 25(1-2): Sn. 99-121.
[46] Aliev AA, Saraeva VV. Isomerization of Peroxy Radicals Resulting from the Radiation-Induced Oxidation of o-Xylene. Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya 1983; 34(4): 371-374.
[47] Badin EJ. The Reaction between Atomic Hydrogen and Molecular Oxygen at Low Pressures. Surface Effects. Journal of the American Chemistry Society 1948; 70(11): 3651-3655. http://dx.doi.org/10.1021/ja01191a032
[48] Buchachenko AL. Kompleksy radikalov i molekulyarnogo kisloroda s organicheskimi molekulami. (Complexes of Radicals and Dioxygen with Organic Molecules). I. P. Beletskaya, Editor, Nauka, Moscow 1984.
[49] Francisco JS, Williams IH. The Thermochemistry of Polyoxides and Polyoxy Radicals. International Journal of Chemical Kinetics 1988; 20(6): 455-466. http://dx.doi.org/10.1002/kin.550200605
[50] Kokorev VN, Vyshinskii NN, Maslennikov VP, Abronin IA, Zhidomirov GM, Aleksandrov YuA. Electronic Structure and Chemical Reactions of Peroxides: I. MINDO/3 Calculation of the Geometry and Enthalpy of Formation of the Ground States of Organic and Organoelement Peroxides. Zhurnal Strukturnoi Khimii 1981; 22(4): 9-15.
[51] Dmitruk AF, Lobanov VV, Kholoimova LI. Role of Tetroxide Conformation in the Mechanism of Peroxy Radical Recombination. Teoreticheskaya i Eksperimental’naya Khimiya 1986; 22(3): 363-366.
[52] Belyakov VA, Vasil'ev RF, Ivanova NM, Minaev BF, Osyaeva OV, Fedorova GF. Electronic Model of the Excitation of Chemiluminescence in the Oxidation of Organic Compounds. Izvestiya Akademii Nauk SSSR, Ser.: Fizika 1987; 51(3): 540-547.
[53] Ase P, Bock W, Snelson A. Alkylperoxy and Alkyl Radicals. 1. Infrared Spectra of CH3O2 and CH3O4CH3 and the Ultraviolet Photolysis of CH3O2 in Argon + Oxygen Matrices. The Journal of Physical Chemistry 1986; 90(10): 2099-2109. http://dx.doi.org/10.1021/j100401a024
[54] Pimentel GC, McClellan AL. The Hydrogen Bond. L. Pauling, Editor, Freeman, San Francisco 1960; p. 200.
[55] Russell GA. Deuterium-Isotope Effects in the Autooxidation of Aralkyl Hydrocarbons: Mechanism of the Interaction of Peroxy Radicals. Journal of the American Chemical Society 1957; 79(14): 3871-3877. http://dx.doi.org/10.1021/ja01571a068
[56] Silaev MM. The Competition Kinetics of Nonbranched Chain Processes of Free-Radical Addition to Double Bonds of Molecules with the Formation of 1:1 Adducts and the Inhibition by the Substrate. Oxidation Communication 1999; 22(2): 159-170.
[57] Silaev MM. The Competition Kinetics of Radical-Chain Addition. Zhurnal Fizicheskoi Khimii 1999; 73(7): 1180-1184, English Translation in: Russian Journal of Physical Chemistry 1999; 73(7): 1050-1054.
[58] Darmanyan AP, Gregory DD, Guo Y, Jenks WS, Burel L, Eloy D, Jardon P. Quenching of Singlet Oxygen by Oxygenand Sulfur-Centered Radicals: Evidence for Energy Transfer to Peroxy Radicals in Solution. Journal of the American Chemistry Society 1998; 120(2): 396-403. http://dx.doi.org/10.1021/ja9730831
[59] Kanofsky JR. Singlet Oxygen Production from the Reactions of Alkylperoxy Radicals. Evidence from 1268-nm Chemiluminescence. The Journal of Organic Chemistry 1986; 51(17): 3386-3388. http://dx.doi.org/10.1021/jo00367a032
[60] Semenov NN. Tsepnye reaktsii. (Chain Reactions). Goskhimtekhizdat, Leningrad 1934; 241: 203.
[61] Reznikovskii M, Tarasova Z, Dogadkin B. Oxygen Solubility in Some Organic Liquids. Zhurnal Obshchei Khimii 1950; 20(1): 63-67.
[62] Howard JA, Ingold KU. Absolute Rate Constants for Hydrocarbon Autooxidation. VI. Alkyl Aromatic and Olefinic Hydrocarbons. Canadian Journal of Chemistry 1967; 45(8): 793-802. http://dx.doi.org/10.1139/v67-132
[63] Barr NF, Allen AO. Hydrogen Atoms in the Radiolysis of Water. The Journal of Physical Chemistry 1959; 63(6): 928- 931. http://dx.doi.org/10.1021/j150576a037
[64] Smith HA, Napravnik A. Photochemical Oxidation of Hydrogen. Journal of the American Chemistry Society 1940; 62(1): 385-393. http://dx.doi.org/10.1021/ja01859a043
[65] Pagsberg PB, Eriksen J, Christensen HC. Pulse Radiolysis of Gaseous Ammonia-Oxygen Mixtures. The Journal of Physical Chemistry 1979; 83(5): 582-590. http://dx.doi.org/10.1021/j100468a006
[66] Silaev MM. Competitive Mechanism of the Non-branched Radical Chain Oxidation of Hydrogen Involving the Free Cyclohydrotetraoxyl Radical
[???? ??] • , Which Inhibits the Chain Process. Khimiya Vysokikh Energii 2003; 37(1): 27-32, English Translation in: High Energy Chemistry 2003; 37(1): 24-28.
[67] Silaev MM. Simulation of Initiated Nonbranched Chain Oxidation of Hydrogen: Oxygen as an Autoinhibitor. Khimiya Vysokich Energii 2008; 42(2): 124-129, English Translation in: High Energy Chemistry 2008; 42(1): 95-100. http://dx.doi.org/10.1134/S0018143908020069
[68] McKay DJ, Wright JS. How Long Can You Make an Oxygen Chain? Journal of the American Chemistry Society 1998; 120(5): 1003-1013. http://dx.doi.org/10.1021/ja971534b
[69] Lipikhin NP. Dimers, Clusters, and Cluster Ions of Oxygen in the Gas Phase. Uspekhi Khimii 1975; 44(8): 366-376. http://dx.doi.org/10.1070/RC1975v044n08ABEH002366
[70] Razumovskii SD. Kislorod - elementarnye formy i svoistva. (Oxygen: Elementary Forms and Properties). Khimiya, Moscow 1979.
[71] Dunn KM, Scuceria GE, Schaefer HF III. The infrared spectrum of cyclotetraoxygen, O4: a theoretical investigation employing the single and double excitation coupled cluster method. The Journal of Chemical Physics 1990; 92(10): 6077-6080. http://dx.doi.org/10.1063/1.458380
[72] Brown L, Vaida V. Photoreactivity of Oxygen Dimers in the Ultraviolet. The Journal of Physical Chemistry 1996; 100(19): 7849-7853. http://dx.doi.org/10.1021/jp9526713
[73] Aquilanti V, Ascenzi D, Bartolomei M, Cappelletti D, Cavalli S, de Castro-Vitores M, Pirani F. Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2-O2 Dimer. Journal of the American Chemistry Society 1999; 121(46): 10794-1080. http://dx.doi.org/10.1021/ja9917215
[74] Cacace F, de Petris G, Troiani A. Experimental Detection of Tetraoxygen. Angewandte Chemie, Internation Edition (in English) 2001; 40(21): 4062-4065. http://dx.doi.org/10.1002/1521- 3773(20011105)40:213.0.CO;2-X
[75] Taylor HS. Photosensitisation and the Mechanism of Chemical Reactions. Transactions of the Faraday Society 1926; 21(63(3)): 560-568.
[76] Nalbandyan AB, Voevodskii VV. Mekhanizm okisleniya i goreniya vodoroda. (Mechanism of Hydrogen Oxidation and Combustion). Kondrat'ev VN, Ed., Akad. Nauk SSSR, Moscow 1949.
[77] Foner SN, Hudson RL. Mass spectrometry of the HO2 free radical. The Journal of Chemical Physics 1962; 36(10): 2681. http://dx.doi.org/10.1063/1.1732352
[78] Hochanadel CJ, Ghormley JA, Ogren PJ. Absorption Spectrum and Reaction Kinetics of the HO2 Radical in the Gas Phase. The Journal of Chemical Physics 1972; 56(9): 4426-4432. http://dx.doi.org/10.1063/1.1677885
[79] Robertson JB. A Mass Spectral Search for H2O4 and HO4 in a Gaseous Mixture Containing HO2 and O2. Chemistry and Industry 1954; 48: 1485.
[80] Bahnemann D, Hart EJ. Rate Constants of the Reaction of the Hydrated Electron and Hydroxyl Radical with Ozone in Aqueous Solution. The Journal of Physical Chemistry 1982; 86(2): 252-255. http://dx.doi.org/10.1021/j100391a024
[81] Vodorodnaya svyaz’: Sbornik statei. (The Hydrogen Bonding: Collection of Articles). Sokolov ND, Ed., Nauka, Moscow 1981.
[82] Staehelin J, Bühler RE, Hoigné J. Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. OH and HO4 as Chain Intermediates. The Journal of Physical Chemistry 1984; 88(24): 5999-6004. http://dx.doi.org/10.1021/j150668a051
[83] Cacace F, de Petris G, Pepi F, Troiani A. Experimental Detection of Hydrogen Trioxide. Science 1999; 285(5424): 81-82. http://dx.doi.org/10.1126/science.285.5424.81
[84] Bühler RF, Staehelin J, Hoigné J. Ozone Decomposition in Water Studied by Pulse Radiolysis. 1. HO2/O2 - and HO3/O3 - as Intermediates. The Journal of Physical Chemistry 1984; 88(12): 2560-2564. http://dx.doi.org/10.1021/j150656a026
[85] Trushkov IV, Silaev MM, Chuvylkin ND. Acyclic and Cyclic Forms of the Radicals HO4 • , CH3O4 • , and C2H5O4 • : Ab Initio Quantum Chemical Calculations. Izvestiya Akademii Nauk, Ser.: Khimiya 2009; 3: 479-482, English Translation in: Russian Chemical Bulletin, International Edition 2009; 58(3): 489-492.
[86] Mansergas A, Anglada JM, Olivella S, Ruiz-López MF. On the Nature of the Unusually Long OO Bond in HO3 and HO4 Radicals. Phys Chem Chem Phys 2007; 9(44): 5865-5873. http://dx.doi.org/10.1039/b711464h
[87] Wong W, Davis DD. A Flash Photolysis Resonance Fluorescence Study of the Reactions of Atomic Hydrogen and Molecular Oxygen: H + O2 + M HO2 + M. International Journal of Chemical Kinetics 1974; 6(3): 401-416. http://dx.doi.org/10.1002/kin.550060310
[88] Xu X, Muller RP, Goddard WA III. The Gas Phase Reaction of Singlet Dioxygen with Water: a Water-Catalyzed Mechanism. Proceedings of the National Academy Sciences of the United States of America 2002; 99(6): 3376-3381. http://dx.doi.org/10.1073/pnas.052710099
[89] Seidl ET, Schaefer HF III. Is There a Transition State for the Unimolecular Dissociation of Cyclotetraoxygen (O4)? The Journal of Chemical Physics 1992; 96(2): 1176-1182. http://dx.doi.org/10.1063/1.462205
[90] Hernández-Lamoneda R, Ramírez-Solís A. Reactivity and Electronic States of O4 along Minimum Energy Paths. The Journal of Chemical Physics 2000; 113(10): 4139-4145. http://dx.doi.org/10.1063/1.1288370
[91] Varandas AJC, Zhang L. Test Studies on the Potential Energy Surface and Rate Constant for the OH + O3 Atmospheric Reaction. Chemical Physics Letters 2000; 331(5-6): 474-482. http://dx.doi.org/10.1016/S0009-2614(00)01222-7
[92] Atmosfera. Spravochnik. (Atmosphere: A Handbook), Gidrometeoizdat, Leningrad 1991.
[93] Okabe H. Photochemistry of Small Molecules. Wiley, New York 1978.
[94] Pikaev AK. Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei. (Modern Radiation Chemistry: Radiolysis of Gases and Liquids). Nauka, Moscow 1986.
[95] Boyd AW, Willis C, Miller OA. A Re-examination of the Yields in the High Dose Rate Radiolysis of Gaseous Ammonia. Canadian Journal of Chemistry 1971; 49(13): 2283-2289. http://dx.doi.org/10.1139/v71-369
[96] Silaev MM. Competition Mechanism of Substrate-Inhibited Radical Chain Addition to Double Bond. Neftekhimiya 2000; 40(1): 33-40, English Translation in: Peroleum Chemistry 2000; 40(1): 29-35.
[97] Silaev MM. Competition Kinetics of Nonbranched Chain Processes of Free Radical Addition to the C=C, C=O, and O=O Double Bonds of Molecules. Neftekhimiya 2003; 43(4): 302-307, English Translation in: Petroleum Chemistry, vol. 43(4, 2003: 258-273.
[98] Silaev MM. Low-reactive Free Radicals Inhibiting Nonbranched Chain Processes of Addition. Biofizika 2005; 50(4): 585-600, English Translation in: Biophysics 2005; 50(4): 511-524.
[99] Sanderson RT. Radical Reorganization and Bond Energies in Organic Molecules. The Journal of Organic Chemistry 1982; 47(20): 3835-3839. http://dx.doi.org/10.1021/jo00141a006
[100] Vereshchinskii IV, Pikaev AK. Vvedenie v radiatsionnuyu khimiyu. (Introduction to Radiation Chemistry). Spitsyn VI, Ed., Akademiya Nauk SSSR, Moscow 1963; p. 190.

Downloads

Published

2014-12-17

How to Cite

Silaev, M. M. (2014). The Radical-Chain Addition to Double Molecular Bonds by the Nonbranched-Chain Mechanism: Low-Reactive Free Radicals Shortening Kinetic Chains. Journal of Applied Solution Chemistry and Modeling, 3(4), 202–222. https://doi.org/10.6000/1929-5030.2014.03.04.3

Issue

Section

General Articles