Polymeric Versus Lipid Nanoparticles: Comparative Study of Nanoparticulate Systems as Indomethacin Carriers

Authors

  • Ana Carvalho CFUM - Centre of Physics of University of Minho, Campus of Gualtar
  • Ivo Lopes University of Minho
  • Odete Gonçalves CFUM - Centre of Physics of University of Minho, Campus of Gualtar
  • Eduarda Bárbara CFUM - Centre of Physics of University of Minho, Campus of Gualtar
  • M. Elisabete C.D. Real Oliveira CFUM - Centre of Physics of University of Minho, Campus of Gualtar

DOI:

https://doi.org/10.6000/1929-5030.2015.04.02.2

Keywords:

NSAID, PLGA nanoparticles, nanostructured lipid carriers (NLC), encapsulation efficiency, dynamic and electrophoretic light scattering (DLS and ELS), differential scanning calorimetry (DSC), electron scanning microscopy (SEM)

Abstract

Encapsulation of nonsteroidal or non-steroidal anti-inflammatory drugs (NSAID) in nanocarrier systems aims to enhance bioavailability and to decrease toxicity of these drugs and thus improve the efficacy of treatments. With this aim two types of nanoparticles were prepared and compared: lipid nanoparticles, made of cetyl palmitate and Miglyol 812 which were uncoated or coated with chitosan; or polymeric nanoparticles, made of poly (DL-lactic-co-glycolic acid) (PLGA) for which different emulsion stabilizers were also tested (poly (vinyl alcohol) (PVA), and Pluronic F68). Nanoparticles were characterized for drug content and for particle size, charge and morphology. The lipid matrix was analyzed regarding its crystallinity by differential scanning calorimetry (DSC). The size of the nanoparticles was measured by dynamic light scattering (DLS) which indicated a unimodal particle size distribution in all systems. Nanoparticles' stability was confirmed by their highly negative surface charge in the case of polymeric and uncoated lipid nanoparticles, as analyzed by zeta potential measurements using electrophoretic light scattering (ELS). Lipid chitosan coated nanoparticles have also shown to be stable presenting highly positive surface charge. Results have further demonstrated that indomethacin is highly encapsulated regardless the type of particles. Morphological analysis by scanning electron microscopy has shown that the nanoparticles were smooth and spherical.

The results gathered within the current study point to the conclusion that the proposed formulations provide nanoparticles of satisfactory quality to encapsulate indomethacin, which might be used to improve bioavailability of other NSAID in the treatment of inflammation.

Author Biography

Ivo Lopes, University of Minho

Nanodelivery – I&D em Bionanotechnologia, Lda., Department of Biology

References

[1] Narvekar M, Xue HY, Wong HL. A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). Int J Pharm 2012; 436: 721-31. http://dx.doi.org/10.1016/j.ijpharm.2012.07.042
[2] Muchow M, Maincent P, Müller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm 2008; 34: 1394-405. http://dx.doi.org/10.1080/03639040802130061
[3] Zhou X, Zhang X, Ye Y, et al. Nanostructured lipid carriers used for oral delivery of oridonin: An effect of ligand modification on absorption. Int J Pharm 2014; 479: 391-8. http://dx.doi.org/10.1016/j.ijpharm.2014.12.068
[4] Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J. Drug Target 2012; 20: 813-30. http://dx.doi.org/10.3109/1061186X.2012.716845
[5] Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70: 1-20. http://dx.doi.org/10.1016/S0168-3659(00)00339-4
[6] Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105-18. http://dx.doi.org/10.2147/JPR.S75160
[7] Lúcio M, Nunes C, Lima JLFC, Reis S. A biophysical approach to the study of the therapeutic and toxic effects of non-steroidal anti-inflammatory drugs, in: Jurado AS, Pedroso de Lima MC, Almeida L, edditor. A toxicological/pharmacological approach to chemico-biological interactions at a membrane level. Research Signpost, Transworld Research Network, Kerala, India, 2012; p. 41– 71M.
[8] Pereira-Leite C, Nunes C, Reis S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 2013; 52: 571-84. http://dx.doi.org/10.1016/j.plipres.2013.08.003
[9] Sam MT, Gayathri DS, Prasanth V, Vinod B. NSAIDs as microspheres. J Pharmacol 2008; 6: 1-8.
[10] Lanas Á, Carrera P, Arguedas Y, et al. Risk of upper and lower gastrointestinal bleeding in patients taking nonsteroidal anti-inflammatory drugs, antiplatelet agents, or anticoagulants. Clin Gastroenterol Hepatol 2015; 13: 906-12. http://dx.doi.org/10.1016/j.cgh.2014.11.007
[11] Lúcio M, Lima JLFC, Reis S. Ideas in chemistry and molecular sciences, in: Pignaro B, edditor. WILEY-VCH verlag GmbH & Co. KGaA, 2010.
[12] Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999; 25: 471-6. http://dx.doi.org/10.1081/DDC-100102197
[13] Bernardi A, Braganhol E, Jager E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 2009; 281: 53-63. http://dx.doi.org/10.1016/j.canlet.2009.02.018
[14] Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm 2005; 304: 231-8. http://dx.doi.org/10.1016/j.ijpharm.2005.08.011
[15] Graves RA, Poole D, Moiseyev R, Bostanian LA, Mandal TK. Encapsulation of indomethacin using coaxial ultrasonic atomization followed by solvent evaporation. Drug Dev Ind Pharm 2008; 34: 419-26. http://dx.doi.org/10.1080/03639040701662636
[16] Gursoy A, Akbuga J, Eroglu L, Ulutin S. The inhibitory effect of liposome-encapsulated indomethacin on inflammation and platelet aggregation. J Pharm Pharmacol 1988; 40: 53-4. http://dx.doi.org/10.1111/j.2042-7158.1988.tb05150.x
[17] Kim SY, Lee YM, Shin HJ, Kang JS. Indomethacin-loaded methoxy poly(ethylene glycol)/ poly(epsilon-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal SpragueDawley rats. Biomaterials 2001; 22: 2049-56. http://dx.doi.org/10.1016/S0142-9612(00)00393-8
[18] Liu H, Chen J. Indomethacin-loaded Poly(butylcyanoacrylate) Nanoparticles: Preparation and Characterization. PDA J Pharm Sci Technol 2009; 63: 207-16.
[19] Malaiya A, Vyas SP. Preparation and characterization of indomethacin magnetic nanoparticles. J Microencapsul 1988; 5: 243-53. http://dx.doi.org/10.3109/02652048809064169
[20] Michailova V, Berlinova I, Iliev P, et al. Nanoparticles formed from PNIPAM-g-PEO copolymers in the presence of indomethacin. Int J Pharm
[Internet] 2009/09/29 ed. 2009; 384: 154-64. http://dx.doi.org/10.1016/j.ijpharm.2009.09.034
[21] Onischuk AA, Tolstikova TG, Sorokina IV, et al. Antiinflammatory effect from indomethacin nanoparticles inhaled by male mice. J Aerosol Med Pulm Drug Deliv 2008; 21: 231- 43. http://dx.doi.org/10.1089/jamp.2007.0672
[22] Pietkiewicz J, Sznitowska M, Placzek M. The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates. Int J Pharm 2006; 310: 64-71. http://dx.doi.org/10.1016/j.ijpharm.2005.11.038
[23] Ricci M, Puglia C, Bonina F, Di Giovanni C, Giovagnoli S, Rossi C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J Pharm Sci 2005; 94: 1149-59. http://dx.doi.org/10.1002/jps.20335
[24] Vyas SP, Malaiya A. In vivo characterization of indomethacin magnetic polymethyl methacrylate nanoparticles. J Microencapsul 1989; 6: 493-9. http://dx.doi.org/10.3109/02652048909031169
[25] Watanabe T, Hasegawa S, Wakiyama N, Kusai A, Senna M. Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion. Int J Pharm 2003; 250: 283-6. http://dx.doi.org/10.1016/S0378-5173(02)00549-5
[26] Zhang JX, Li XJ, Qiu LY, et al. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation. J Control Release 2006; 116: 322-9. http://dx.doi.org/10.1016/j.jconrel.2006.09.013
[27] Dupeyrón D, Kawakami M, Ferreira AM, et al. Design of indomethacin-loaded nanoparticles: effect of polymer matrix and surfactant. Int J Nanomedicine 2013; 8: 3467-77. http://dx.doi.org/10.2147/IJN.S47621
[28] Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 2007; 59: 444-53. http://dx.doi.org/10.1016/j.addr.2007.04.010
[29] Chime SA, Attama AA, Onunkwo GC. Sustained release indomethacin-loaded solid lipid microparticles based on solidified reverse micellar solution (SRMS): in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2012; 22: 485-92. http://dx.doi.org/10.1016/S1773-2247(12)50085-7
[30] Fernández-Carballido A, Puebla P, Herrero-Vanrell R, Pastoriza P. Radiosterilisation of indomethacin PLGA/PEGderivative microspheres: protective effects of low temperature during gamma-irradiation. Int J Pharm 2006; 313: 129-35. http://dx.doi.org/10.1016/j.ijpharm.2006.01.034
[31] Kang Y, Wu J, Yin G, et al. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Eur J Pharm Biopharm 2008; 70: 85-97. http://dx.doi.org/10.1016/j.ejpb.2008.03.011
[32] Corrigan OI, Li X. Quantifying drug release from PLGA nanoparticulates. Eur J Pharm Sci 2009; 37: 477-85. http://dx.doi.org/10.1016/j.ejps.2009.04.004
[33] Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacinloaded PLGA nanoparticles by iontophoresis. Colloids Surf B Biointerfaces 2011; 88: 706-10. http://dx.doi.org/10.1016/j.colsurfb.2011.08.004
[34] Tomoda K, Yabuki N, Terada H, Makino K. Surfactant free preparation of PLGA nanoparticles: The combination of antisolvent diffusion with preferential solvation. Colloids Surfaces A Physicochem Eng Asp 2014; 457: 88-93. http://dx.doi.org/10.1016/j.colsurfa.2014.05.010
[35] Neves AR, Lúcio M, Martins S, Luís J, Lima C. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 2013; 8: 177-87.
[36] Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64: 701-5. http://dx.doi.org/10.1016/j.addr.2011.12.006
[37] Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int J Nanomedicine 2007; 2: 595- 607.
[38] Martins S, Silva AC, Ferreira DC, Souto EB. Improving Oral Absorption of Samon Calcitonin by Trimyristin Lipid Nanoparticles. J Biomed Nanotechnol 2009; 5: 76-83. http://dx.doi.org/10.1166/jbn.2009.443
[39] Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998; 24: 1113-28. http://dx.doi.org/10.3109/03639049809108571
[40] Lassalle V, Ferreira ML. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 2007; 7: 767-83. http://dx.doi.org/10.1002/mabi.200700022
[41] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B 2010; 75: 1-18. http://dx.doi.org/10.1016/j.colsurfb.2009.09.001
[42] Sadat F, Mirakabad T, Nejati-koshki K, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 2014; 15: 517-35. http://dx.doi.org/10.7314/APJCP.2014.15.2.517
[43] Ustünda-Okur N, Gökçe EH, Bozb?y?k D , Erilmez S, Ozer O, Ertan G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci 2014; 63: 204-15. http://dx.doi.org/10.1016/j.ejps.2014.07.013
[44] Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl 1): S131-55. http://dx.doi.org/10.1016/S0169-409X(02)00118-7
[45] Seetapan N, Bejrapha P, Srinuanchai W, Puttipipatkhachorn S, Ruktanonchai U. Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: effects of lipid types and concentrations on dispersion consistency. Drug Dev Ind Pharm 2010; 36: 1005-15. http://dx.doi.org/10.3109/03639040903586273
[46] Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm 2012; 81: 463-9. http://dx.doi.org/10.1016/j.ejpb.2012.04.007
[47] Dharmala K, Yoo JW, Lee CH. Development of chitosan-SLN microparticles for chemotherapy: in vitro approach through efflux-transporter modulation. J Control Release 2008; 131: 190-7. http://dx.doi.org/10.1016/j.jconrel.2008.07.034
[48] Prego C, García M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release 2005; 101: 151-62. http://dx.doi.org/10.1016/j.jconrel.2004.07.030
[49] Fonte P, Nogueira T, Gehm C, Ferreira D, Sarmento B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 2011; 1: 299- 308. http://dx.doi.org/10.1007/s13346-011-0023-5
[50] Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 2015; 122: 221-9. http://dx.doi.org/10.1016/j.carbpol.2014.12.084
[51] Malhotra M, Kulamarva A, Sebak S, et al. Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev Ind Pharm 2009; 35: 719- 26. http://dx.doi.org/10.1080/03639040802526789
[52] Arias JL, Lopez-Viota M, Gallardo V, Adolfina Ruiz M. Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur. Drug Dev Ind Pharm 2010; 36: 744-50. http://dx.doi.org/10.3109/03639040903517914
[53] Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 2005; 25: 133-43. http://dx.doi.org/10.1016/j.ejps.2005.02.008
[54] Quintanar-Guerrero D, Fessi H, All6mann E. Influence of stabilizing agents and preparative variables on the formation of poly(D,L-lactic acid) nanoparticles by an emulsificationdiffusion technique. Int J Pharm 1996; 143: 133-41. http://dx.doi.org/10.1016/S0378-5173(96)04697-2
[55] Song KC, Lee HS, Choung IY. The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-coglycolide) nanoparticles. Colloids Surfaces A 2006; 276: 162-7. http://dx.doi.org/10.1016/j.colsurfa.2005.10.064
[56] Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003; 24: 4283-300. http://dx.doi.org/10.1016/S0142-9612(03)00331-4
[57] Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 2003; 55: 115-24. http://dx.doi.org/10.1016/S0939-6411(02)00128-5
[58] Kesisoglou F, Panmai S, Wu Y. Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007; 59: 631-44. http://dx.doi.org/10.1016/j.addr.2007.05.003
[59] Wi niewska M. The temperature effect on electrokinetic properties of the silica-polyvinyl alcohol (PVA) system. Colloid Polym Sci 2011; 289: 341-4. http://dx.doi.org/10.1007/s00396-010-2341-4
[60] Mura S, Hillaireau H, Nicolas J, et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine 2011; 6: 2591-605.
[61] Osterberg T, Svensson M, Lundahl P. Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. Eur J Pharm Sci 2001; 12: 427-39. http://dx.doi.org/10.1016/S0928-0987(00)00183-4
[62] Guo C, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. Eur J Pharm Biopharm 2008; 70: 597-604. http://dx.doi.org/10.1016/j.ejpb.2008.06.008
[63] Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm 2011; 403: 185-91. http://dx.doi.org/10.1016/j.ijpharm.2010.10.013
[64] Alkhamis KA, Obeidat WM, Najib NM. Adsorption of allopurinol and ketotifen by chitosan. AAPS Pharm Sci Tech 2001; 2: E3. http://dx.doi.org/10.1208/pt020103
[65] Anarjan N, Tan CP. Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions. Molecules 2013; 18: 768-77. http://dx.doi.org/10.3390/molecules18010768
[66] Manev ED, Pugh J. Diffuse layer electrostatic potential and stability of thin aqueous films containing a nonionic surfactant. Langmuir 1991; 7: 2253-60. http://dx.doi.org/10.1021/la00058a046
[67] Lucio M, Ferreira H, Lima JLFC. Interactions between oxicams and membrane bilayers: an explanation for their different COX selectivity. Med Chem 2006; 2: 447-56. http://dx.doi.org/10.2174/157340606778250199
[68] Esposito E, Drechsler M, Cortesi R. Microscopy characterisation of micro- and nanosystems for pharmaceutical use. OA Drug Des Deliv 2013; 1: 1-7. http://dx.doi.org/10.13172/2054-4057-1-1-620
[69] Gehrer S, Schmiele M, Westermann M, Steiniger F, Unruh T. Liquid crystalline phase formation in suspensions of solid trimyristin nanoparticles. J Phys Chem B 2014; 118: 11387- 96. http://dx.doi.org/10.1021/jp506787v
[70] Kuntsche J, Bunjes H. Influence of preparation conditions and heat treatment on the properties of supercooled smectic cholesteryl myristate nanoparticles. Eur J Pharm Biopharm 2007; 67: 612-20. http://dx.doi.org/10.1016/j.ejpb.2007.04.019
[71] Bunjes H, Koch MHJ, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 2003; 92: 1509-20. http://dx.doi.org/10.1002/jps.10413
[72] Zimmermann E, Souto EB, Muller RH. Physicochemical investigations on the structure of drug-free and drug- loaded solid lipid nanoparticles ( SLN TM ) by means of DSC and 1 H NMR. Pharmazie 2005; 60: 1-6.
[73] Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev 2007; 59: 379-402. http://dx.doi.org/10.1016/j.addr.2007.04.013
[74] Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006; 2: 53-65. http://dx.doi.org/10.1016/j.nano.2006.04.009
[75] Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly ( D , L - lactide- co -glycolide ) nano- and microparticles. J Control Release 2003; 92: 173-87. http://dx.doi.org/10.1016/S0168-3659(03)00328-6
[76] Bala I, Hariharan S, Kumar MNVR. PLGA Nanoparticles in Drug Delivery: The State of the Art Crit Rev Ther Drug Carr Syst 2004; 21: 387-422. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5. 20
[77] Helleberg L. Clinical Pharmacokinetics of Indomethacin. Clinical Pharmacokinetics 1981; 6: 245-58. http://dx.doi.org/10.2165/00003088-198106040-00001

Downloads

Published

2015-06-16

How to Cite

Carvalho, A., Lopes, I., Gonçalves, O., Bárbara, E., & Oliveira, M. E. C. R. (2015). Polymeric Versus Lipid Nanoparticles: Comparative Study of Nanoparticulate Systems as Indomethacin Carriers. Journal of Applied Solution Chemistry and Modeling, 4(2), 95–109. https://doi.org/10.6000/1929-5030.2015.04.02.2

Issue

Section

General Articles