Theoretical Interpretation of Polarized Light-Induced Supramolecular Orientation on the Basis of Normal Mode Analysis of Azobenzene as Hybrid Materials in PMMA with Chiral Schiff Base Ni(II), Cu(II), and Zn(II) Complexes

Authors

  • Maiko Ito Department of Chemistry, Faculty of Science, Tokyo University of Science
  • Takashiro Akitsu Department of Chemistry, Faculty of Science, Tokyo University of Science
  • Mauricio A. Palafox Departamento de Química-Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid

DOI:

https://doi.org/10.6000/1929-5030.2016.05.01.3

Keywords:

Chirality, azobenzene, polarized light, IR spectra, DFT.

Abstract

We have prepared hybrid materials of azobenzene and chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes and investigated their linearly or circularly polarized UV (ultraviolet) light-induced supramolecular orientation with polarized electronic and IR spectra or CD (circular dichroism) spectra. The experimental FT-IR (Fourier transfer-infrared) spectra of azobenzene molecules were recorded at room temperature, and the results were compared with quantum chemical theoretical values using B3LYP, M052X, and M062X DFT (density functional theory) methods. The interaction of azobenzene with PMMA was simulated. Molecular geometry, vibrational wavenumbers, and thermodynamic parameters were calculated in all these systems. With the help of specific scaling procedures for the computed wavenumbers, the experimentally observed FT-IR bands were analyzed and assigned to different normal modes of the molecule. Most modes had wavenumbers in the expected range, and the error obtained was in general very low. Several general conclusions were deduced.

References


[1] Cao J, Liu L-H, Fang W-H, Xie Z-Z, Zhang Y. Photo-induced Isomerization of Ethylene-bridged Azobenzene Explored by ab initio Based Non-adiabatic Dynamics Simulation: A Comparative Investigation of the Isomerization in the Gas and Solution Phases. J Chem Phys 2013; 138: 134306. http://dx.doi.org/10.1063/1.4798642
[2] Böckmann M, Doltsinis NL, Marx D. Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation. J Chem Phys 2012; 137: 22A505.
[3] Pederzoli M, Pittner J, Barbatti M, Lischka H. Cis-trans photoisomerization of azobenzene upon excitation to the S1 state: An ab initio molecular dynamics and QM/MM study, in Nanoengineering: Fabrication, Properties, Optics, and Devices IX, Proceedings of SPIE, vol. 8463, Article Number: 846318, Dobisz EA, Eldada LA, Eds., SPIE-INT SOC OPTICAL ENGINEERING, 2012.
[4] Zhou Y-H, Yuan L-Z, Zheng X-H. Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent. Comp Mater Sci 2012; 61: 145-9. http://dx.doi.org/10.1016/j.commatsci.2012.04.024
[5] Fan Z-Q, Zhang Z-H, Qiu M, Deng X-Q, Tang G-P. Controllable negative differential resistance behavior of an azobenzene molecular device induced by different moleculeelectrode distances. Chin Phys Lett 2012; 29: 077305. http://dx.doi.org/10.1088/0256-307X/29/7/077305
[6] Cusati T, Granucci G, Martínez-Núñez E, Martini F, Persico M, Vázquez S. Semiempirical Hamiltonian for simulation of azobenzene photochemistry. J Phys Chem A 2012; 116: 98- 110. http://dx.doi.org/10.1021/jp208574q
[7] Dong Z, Seemann NM, Lu N, Song Y. Effects of high pressure on azobenzene and hydrazobenzene probed by Raman spectroscopy. J Phys Chem B 2011; 115: 14912-18. http://dx.doi.org/10.1021/jp207170w
[8] Pederzoli M, Pittner J, Barbatti M, Lischka H. Non-adiabatic molecular dynamics study of the cis–trans photoisomerization of azobenzene excited to the S1 state. J Phys Chem A 2011; 115: 11136-43. http://dx.doi.org/10.1021/jp2013094
[9] Liu L, Yuan S, Fang W-H, Zhang Y. Probing highly efficient photoisomerization of a bridged azobenzene by a combination of CASPT2//CASSCF calculation with semiclassical dynamics simulation. J Phys Chem A 2011; 115: 10027-34. http://dx.doi.org/10.1021/jp203704x
[10] Wang L, Zou H, Yi C, Xu J, Xu W. On the spectra and isomerization of azobenzene attached non-covalently to an armchair (8,8) single-walled carbon nanotube. Dyes Pigments 2011; 89: 290-6. http://dx.doi.org/10.1016/j.dyepig.2010.04.003
[11] Jacquemin D, Laurent AD, Perpète EA, André J-M. An ab initio simulation of the UV/visible spectra of Nbenzylideneaniline dyes. Int J Quantum Chem 2009; 109: 3506-15. http://dx.doi.org/10.1002/qua.22303
[12] Konôpka M, Turansky R, Doltsinis NL, Marx D, Stich I. Azobenzene–Metal Junction as a Mechanically and Opto– Mechanically Driven Switch. High Perform Comp Sci Eng 2008 – Trans High Perform Comput Center Stuttgart, HLRS 2008; 2009: 95-108.
[13] Crecca CR, Roitberg AE. Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives. J Phys Chem A 2006; 110: 8188- 203. http://dx.doi.org/10.1021/jp057413c
[14] Fliegl H, Köhn A, Hättig C, Ahlrichs R. Ab Initio Calculation of the Vibrational and Electronic Spectra of trans- and cisAzobenzene. J Am Chem Soc 2003; 125: 9821-7. http://dx.doi.org/10.1021/ja034433o
[15] Ishikawa T, Noro T, Shoda T. Theoretical study on the photoisomerization of azobenzene. J Chem Phys 2001; 115: 7503. http://dx.doi.org/10.1063/1.1406975
[16] Tsuji T, Takashima H, Takeuchi H, Egawa T, Konaka S. Molecular structure and torsional potential of transazobenzene: a gas electron diffraction study. J Phys Chem A 2001; 105: 9347-53. http://dx.doi.org/10.1021/jp004418v
[17] Armstrong DR, Clarkson J, Smith WE. Vibrational analysis of trans-azobenzene. J Phys Chem 1995; 99: 17825-31. http://dx.doi.org/10.1021/j100051a005
[18] Morley JO. Theoretical calculations of the structure of a donor—acceptor stilbene, azobenzene and related molecules. J Mol Struct (Theochem) 1995; 340: 45-50. http://dx.doi.org/10.1016/0166-1280(95)04213-P
[19] Akitsu T, Nishijo J. The first detection of photomodulation by both DC and in-phase AC susceptibility for organic/inorganic hybrid materials containing cyano-bridged Gd-Cr complex and azobenzene. J Magn Magn Mater 2008; 320: 1586-90. http://dx.doi.org/10.1016/j.jmmm.2008.01.008
[20] Akitsu T, Einaga Y. Syntheses, crystal structures, and electronic properties of a series of copper(II) complexes with 3,5-halogen-substituted Schiff base ligands and their solutions. Polyhedron 2005; 24: 2933-43. http://dx.doi.org/10.1016/j.poly.2005.06.018
[21] Akitsu T, Einaga Y. Synthesis, crystal structures and electronic properties of Schiff base nickel (II) complexes: Towards solvatochromism induced by a photochromic solute. Polyhedron 2005; 24: 1869-77. http://dx.doi.org/10.1016/j.poly.2005.06.019
[22] Akitsu T. Photofunctional supramolecular solution systems of chiral Schiff base nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes. Polyhedron 2007; 26: 2527- 35. http://dx.doi.org/10.1016/j.poly.2006.12.031
[23] Akitsu T, Itoh T. Polarized spectroscopy of hybrid materials of chiral Schiff base cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes in PMMA films. Polyhedron 2010; 29: 477-87. http://dx.doi.org/10.1016/j.poly.2009.06.050
[24] Akitsu T, Ishioka C. Manipulation and observation by polarized light: hybrid materials of chiral schiff base Mn(III) complexes and azobenzene in PMMA. Asian Chem Lett 2010; 14: 37-51.
[25] Akitsu T, Tanaka R. Polarized electronic and IR spectroscopy of hybrid materials of chiral Cu(II) and Mn12 complexes and some photochromic compounds in PMMA films. Asian Chem Lett 2010; 14: 235-54.
[26] Aritake T, Takanashi T, Yamazaki A, Akitsu T. Polarized spectroscopy and hybrid materials of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes with included or separated azogroups. Polyhedron 2011; 30: 886-94. http://dx.doi.org/10.1016/j.poly.2010.12.015
[27] Akitsu T, Miura Y. Polarized electronic spectra of organic/inorganic hybrid materials of chiral Schiff base Ni(II) or Cu(II) complexes and disperse red 1 or azobenzene in PMMA films. J Chem Chem Eng 2011; 5: 443-50.
[28] Aritake Y, Akitsu T. The role of chiral dopants in organic/inorganic hybrid materials containing chiral Schiff base Ni(II), Cu(II) and Zn(II) complexes. Polyhedron 2012; 31: 278-84. http://dx.doi.org/10.1016/j.poly.2011.09.025
[29] Yamazaki A, Akitsu T. Polarized spectroscopy and polarized UV light-induced molecular orientation of chiral diphenyl Schiff base Ni(II) and Cu(II) complexes and azobenzene in a PMMA film. RSC Adv 2012; 2: 2975-80. http://dx.doi.org/10.1039/c2ra00407k
[30] Aritake Y, Takanashi T, Yamazaki A, Akitsu T. Magnets: Types, Uses and Safety, Nova Science Publishers, Inc. 2012; 85.
[31] Yamazak A, Akitsu T. Magnets: Types, Uses and Safety, Nova Science Publishers, Inc. 2012; 51.
[32] Yamazaki A, Kominato C, Matsuoka S, Watanabe Y, Akitsu T, Integrating Approach to Photofunctional Hybrid Materials for Energy and the Environment, Nova Science Publishers, Inc. 2013; 125.
[33] Natansohn A, Rochon P. Photoinduced motions in azocontaining polymers. Chem Rev 2002; 102: 4139-75. http://dx.doi.org/10.1021/cr970155y
[34] Tanaka R, Akitsu T. Polarized electronic and IR spectra of hybrid materials of chiral Mn(II) complexes and different types of photochromic dyes showing photoisomerization or weigert effect. Curr Phys Chem 2011; 1: 82-9. http://dx.doi.org/10.2174/1877946811101020082
[35] Okamoto Y, Nidaira K, Akitsu T. Environmental dependence of artifact CD peaks of chiral schiff base 3d-4f complexes in soft mater PMMA matrix. Int J Mol Sci 2011; 12: 6966-79. http://dx.doi.org/10.3390/ijms12106966
[36] Hattori K, Okamoto Y, Kominato C, Akitsu T. PMMA matrix viscosity dependence of CD bands of flexible chiral schiff base Ni(II), Cu(II), and Zn(II) complexes. Comtemp Eng Sci 2014; 7: 853-9.
[37] Okamoto Y, Nidaira K, Akitsu T. Crystallography: Research, Technology and Applications, Nova Science Publishers, Inc. 2012; 119.
[38] Ito M, Akitsu T. Polarized UV light induced molecular arrangement depending on flexibility of chiral schiff base Ni(II), Cu(II), and Zn(II) complexes by azobenzene in PMMA matrix. Contemp Eng Sci 2014; 7: 869-77.
[39] Hariu N, Ito M, Akitsu T. Linearly, circularly, or non-polarized light induced supramolecular arrangement of diastereomer schiff base Ni (II), Cu (II), and Zn (II) complexes by azobenzene in PMMA matrix. Contemp Eng Sci 2015; 8: 57- 70.
[40] Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R,. Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2009.
[41] Palafox MA, Núñez JL, Gil M, Rastogi VK. Perspectives in Engineering Optics, Singh K, Rastogi VK, Eds. Anita Publications, Delhi-Ghaziabad 2002; 356.
[42] Palafox MA. Structure and conformational analysis of the anti-HIV reverse transcriptase inhibitor AZT using MP2 and DFT methods. Differences with the natural nucleoside thymidine. Simulation of the 1st phosphorylation step with ATP. Phys Chem Chem Phys 2014; 16: 24763-83.
[43] Palafox MA, Bhat D, Goyal Y, Ahmad S, Joe IH, Rastogi VK. FT-IR and FT-Raman spectra, MEP and HOMO-LUMO of 2,5-dichlorobenzonitrile: DFT study. Spectrochim Acta A 2015; 136: 464-72. http://dx.doi.org/10.1016/j.saa.2014.09.058
[44] Molina AT, Palafox MA. Structure and conformational analysis of the anti-HIV AZT 5 -aminocarbonylphosphonate prodrug using DFT methods. Chem Phys 2011; 387: 11-24. http://dx.doi.org/10.1016/j.chemphys.2011.06.022
[45] Palafox MA, Posada-Moreno P, Villarino-Marín AL, MartinezRincon C, Ortuño-Soriano I, Zaragoza-García I. DFT calculation of four new potential agents muscarinic of bispyridinium type: structure, synthesis, biological activity, hydration, and relations with the potents W84 and DUO-3O. J Comp Aided Molec Design 2011; 25: 145-61. http://dx.doi.org/10.1007/s10822-010-9406-9
[46] Palafox MA, Nielsen OF, Lang K, Garg P, Rastogi VK. Geometry and vibrational spectra of 5-substituted uracils. Asian Chem Lett 2004; 8: 81-93.
[47] Palafox MA, Rastogi VK. Quantum chemical predictions of the vibrational spectra of polyatomic molecules. The uracil molecule and two derivatives. Spectrochim Acta A Mol Biomol Spectrosc 2002; 58: 411.
[48] Palafox MA. Recent Res Devel in Phys Chem Transworld Research Network, India 1998; 2: 213.
[49] Palafox MA. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. Int J Quantum Chem 2000; 77: 661-84.
[50] Palafox MA, Iza N, Gil M. The hydration effect on the uracil frequencies: an experimental and quantum chemical study. J Mol Struct (Theochem) 2002; 585: 69-92. http://dx.doi.org/10.1016/S0166-1280(02)00033-7
[51] Zhao Y, Truhlar DG. Applications and validations of the Minnesota density functionals. Chem Phys Lett 2011; 502: 1- 13. http://dx.doi.org/10.1016/j.cplett.2010.11.060
[52] Carpenter JE, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Theochem) 1988; 169: 41-62. http://dx.doi.org/10.1016/0166-1280(88)80248-3
[53] Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988; 88: 899-926. http://dx.doi.org/10.1021/cr00088a005
[54] Gagliardi L, Orlandi G, Bernardi F, Cembran A, Garavelli M. A theoretical study of the lowest electronic states of azobenzene: the role of torsion coordinate in the cis–trans photoisomerization. Theor Chem Acc 2004; 111: 363-72. http://dx.doi.org/10.1007/s00214-003-0528-1
[55] Tsuji T, Takashima H, Takeuchi H, Egawa T, Konaka S. Molecular structure and torsional potential of transazobenzene. A gas electron diffraction study. J Phys Chem A 2001; 105: 9347-53. http://dx.doi.org/10.1021/jp004418v
[56] Palafox MA, Núñez JL, Gil M. Accurate scaling of the vibrational spectra of aniline and several derivatives. J Mol Struct (Theochem) 2002; 593: 101-31. http://dx.doi.org/10.1016/S0166-1280(02)00319-6
[57] Mei Z, Baranovi G, Smre ki V, Novak P, Keresztury G, Holly S. Vibrational coupling in trans-azobenzene and its isotopomers. J Mol Struct 1997; 408-409: 399-403.
[58] Stepani V, Baranovi G, Smre ki V. Structure and vibrational spectra of conjugated Acids of trans- and cisazobenzene. J Mol Struct 2001; 569: 89-109. http://dx.doi.org/10.1016/S0022-2860(00)00967-4
[59] Kellerer B, Hacker H, Brandmüller J. On the structure of azobenzene and tolane in solution: Raman spectra of azobenzene, azobenzene-c/, p,p '-azobenzene-^, azobenzene-15N=15N and tolane. Ind J Pure Appl Phys 1971; 9: 903-9
[60] Gruger A, Le Calvé N, Dizabo P, Fillaux J. J Chim Phys 1972; 69: 291.
[61] Varsanyi G, Assignments for vibrational Spectra of Seven hundred benzene derivatives, Vol 1, (Adam Hilger, London) 1974; 280.
[62] Agarwal P, Bee S, Gupta A, et al. Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile. Spectrochim Acta A 2014; 121: 464-82. http://dx.doi.org/10.1016/j.saa.2013.10.104
[63] Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J. Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides. Chem Phys 2000; 260: 317-25. http://dx.doi.org/10.1016/S0301-0104(00)00251-2
[64] Hovorun DM, Mishchuk TR, Yurenko YP. Biopolymer Cell 2002; 18: 219.
[65] Martel P, Hennion B, Durand D, Calmettes P. Low-frequency vibrations of a nucleoside analog. J Biomol Struct Dyn 1994; 12: 401-11. http://dx.doi.org/10.1080/07391102.1994.10508748
[66] unaga N, Furuya S, Ito M, Kominato C, Akitsu T Computational Chemistry: Theory, Methods and Applications, Nova Science Publishers, Inc. 2014; 85.
[67] Kominato C, Akitsu T. Lett Appl Nano BioSci 2015; 2: 264.

Downloads

Published

2016-01-25

How to Cite

Ito, M., Akitsu, T., & Palafox, M. A. (2016). Theoretical Interpretation of Polarized Light-Induced Supramolecular Orientation on the Basis of Normal Mode Analysis of Azobenzene as Hybrid Materials in PMMA with Chiral Schiff Base Ni(II), Cu(II), and Zn(II) Complexes. Journal of Applied Solution Chemistry and Modeling, 5(1), 30–47. https://doi.org/10.6000/1929-5030.2016.05.01.3

Issue

Section

General Articles